General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 1991, Volume 182, Number 1, Pages 55–87 (Mi msb1274)  

This article is cited in 60 scientific papers (total in 60 papers)

The heat equation on noncompact Riemannian manifolds

A. A. Grigor'yan

Abstract: The behavior of the Green function $G(x,y,t)$ of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.

Full text: PDF file (2708 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1992, 72:1, 47–77

Bibliographic databases:

UDC: 517.9
MSC: 58G11
Received: 07.07.1988 and 15.08.1990

Citation: A. A. Grigor'yan, “The heat equation on noncompact Riemannian manifolds”, Mat. Sb., 182:1 (1991), 55–87; Math. USSR-Sb., 72:1 (1992), 47–77

Citation in format AMSBIB
\by A.~A.~Grigor'yan
\paper The heat equation on noncompact Riemannian manifolds
\jour Mat. Sb.
\yr 1991
\vol 182
\issue 1
\pages 55--87
\jour Math. USSR-Sb.
\yr 1992
\vol 72
\issue 1
\pages 47--77

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Tkachev, “A sharp lower bound for the first eigenvalue on a minimal surface”, Math. Notes, 54:2 (1993), 835–840  mathnet  crossref  mathscinet  zmath  isi
    2. Li P. Tam L., “Greens-Functions, Harmonic-Functions, and Volume Comparison”, J. Differ. Geom., 41:2 (1995), 277–318  mathscinet  zmath  isi
    3. Benjamini I., Chavel I., Feldman E., “Heat Kernel Lower Bounds on Riemannian Manifolds Using the Old Ideas of Nash”, Proc. London Math. Soc., 72:1 (1996), 215–240  crossref  mathscinet  zmath  isi
    4. Qi S. Zhang, “A New Critical Phenomenon for Semilinear Parabolic Problems”, Journal of Mathematical Analysis and Applications, 219:1 (1998), 125  crossref
    5. Hajlasz P., Strzelecki P., “Subelliptic P-Harmonic Maps Into Spheres and the Ghost of Hardy Spaces”, Math. Ann., 312:2 (1998), 341–362  crossref  mathscinet  zmath  isi
    6. Sung C., “A Note on the Existence of Positive Green's Function”, J. Funct. Anal., 156:1 (1998), 199–207  crossref  mathscinet  zmath  isi
    7. Coulhon T., Grigoryan A., “Random Walks on Graphs with Regular Volume Growth”, Geom. Funct. Anal., 8:4 (1998), 656–701  crossref  mathscinet  zmath  isi
    8. Li P., Wang J., “Mean Value Inequalities”, Indiana Univ. Math. J., 48:4 (1999), 1257–1283  mathscinet  zmath  isi
    9. Grigor'yan A. Saloff-Coste L., “Heat Kernel on Connected Sums of Riemannian Manifolds”, Math. Res. Lett., 6:3-4 (1999), 307–321  mathscinet  isi
    10. Zhang Q., “Blow-Up Results for Nonlinear Parabolic Equations on Manifolds”, Duke Math. J., 97:3 (1999), 515–539  crossref  mathscinet  zmath  isi
    11. Grigor'yan A., “Analytic and Geometric Background of Recurrence and Non-Explosion of the Brownian Motion on Riemannian Manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249  crossref  mathscinet  isi
    12. Holopainen I., “Volume Growth, Green's Functions, and Parabolicity of Ends”, Duke Math. J., 97:2 (1999), 319–346  crossref  mathscinet  zmath  adsnasa  isi
    13. Hambly B., Kumagai T., “Transition Density Estimates for Diffusion Processes on Post Critically Finite Self-Similar Fractals”, Proc. London Math. Soc., 78:2 (1999), 431–458  crossref  mathscinet  zmath  isi
    14. Martin T. Barlow, Richard F. Bass, “Divergence Form Operators on Fractal-like Domains”, Journal of Functional Analysis, 175:1 (2000), 214  crossref
    15. Hajlasz P., Koskela P., “Sobolev Met Poincaré”, Mem. Am. Math. Soc., 145:688 (2000), IX+  mathscinet  isi
    16. Grigor'yan A., “Heat Kernels on Manifolds, Graphs and Fractals”, European Congress of Mathematics, Vol I, Progress in Mathematics, 201, eds. Casacuberta C., MiroRoig R., Verdera J., XamboDescamps S., Birkhauser Verlag Ag, 2001, 393–406  mathscinet  isi
    17. Grigor'yan A., Telcs A., “Sub-Gaussian Estimates of Heat Kernels on Infinite Graphs”, Duke Math. J., 109:3 (2001), 451–510  crossref  mathscinet  isi
    18. Alexander Grigor'yan, Laurent Saloff-Coste, “Dirichlet heat kernel in the exterior of a compact set”, Comm Pure Appl Math, 55:1 (2002), 93  crossref  mathscinet  zmath  isi
    19. Feng-Yu Wang, “Liouville theorem and coupling on negatively curved Riemannian manifolds”, Stochastic Processes and their Applications, 100:1-2 (2002), 27  crossref
    20. Minoru Murata, “Martin Boundaries of Elliptic Skew Products, Semismall Perturbations, and Fundamental Solutions of Parabolic Equations”, Journal of Functional Analysis, 194:1 (2002), 53  crossref
    21. Grigor'yan A. Saloff-Coste L., “Hitting Probabilities for Brownian Motion on Riemannian Manifolds”, J. Math. Pures Appl., 81:2 (2002), 115–142  crossref  mathscinet  isi
    22. Thierry Coulhon, Xuan Thinh Duong, “Riesz transform and related inequalities on non-compact Riemannian manifolds”, Comm Pure Appl Math, 56:12 (2003), 1728  crossref  mathscinet  zmath  isi
    23. Coulhon T. Grigor'yan A. Levin D., “On Isoperimetric Profiles of Product Spaces”, Commun. Anal. Geom., 11:1 (2003), 85–120  mathscinet  zmath  isi
    24. Grigor'yan A., Kelbert M., “Recurrence and Transience of Branching Diffusion Processes on Riemannian Manifolds”, Ann. Probab., 31:1 (2003), 244–284  crossref  mathscinet  isi
    25. Auscher P., Coulhon T., Duong X., Hofmann S., “Riesz Transform on Manifolds and Heat Kernel Regularity”, Ann. Sci. Ec. Norm. Super., 37:6 (2004), 911–957  crossref  mathscinet  zmath  isi
    26. Kumagai T., “Heat Kernel Estimates and Parabolic Harnack Inequalities on Graphs and Resistance Forms”, Publ. Res. Inst. Math. Sci., 40:3 (2004), 793–818  crossref  mathscinet  zmath  isi
    27. Kim S., “Harnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds”, Pac. J. Math., 213:2 (2004), 281–293  crossref  mathscinet  zmath  isi
    28. C. M. P. A. Smulders, “Heat Kernels on homogeneous spaces”, J Austral Math Soc, 78:1 (2005), 109  crossref  mathscinet  zmath  isi
    29. M. van den Berg, “Heat content and Hardy inequality for complete Riemannian manifolds”, Journal of Functional Analysis, 233:2 (2006), 478  crossref
    30. Telcs A., “Sub-Gaussian Short Time Asymptotics for Measure Metric Dirichlet Spaces”, J. Theor. Probab., 19:3 (2006), 631–645  crossref  mathscinet  zmath  isi
    31. Kim P., Song R., “Two-Sided Estimates on the Density of Brownian Motion with Singular Drift”, Ill. J. Math., 50:3 (2006), 635–688  mathscinet  zmath  isi
    32. [Anonymous], “Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Caratheodory Spaces - Introduction”, Mem. Am. Math. Soc., 182:857 (2006), 1+  mathscinet  isi
    33. Zhang Q.S., “Stability of the Cheng-Yau Gradient Estimate”, Pac. J. Math., 225:2 (2006), 379–398  crossref  mathscinet  zmath  isi
    34. Mustapha S., “Gaussian Estimates for Spatially Inhomogeneous Random Walks on Z(D)”, Ann. Probab., 34:1 (2006), 264–283  crossref  mathscinet  zmath  isi
    35. Grigor'yan A., “Heat Kernels on Weighted Manifolds and Applications”, Ubiquitous Heat Kernel, Contemporary Mathematics Series, 398, ed. Jorgenson J. Walling L., Amer Mathematical Soc, 2006, 93–191  crossref  mathscinet  isi
    36. V. Knopova, “A Note on the Transition Density Estimate for Some Diffusion Process on a d–Set”, Acta Appl Math, 96:1-3 (2007), 293  crossref  mathscinet  zmath  isi
    37. Kassmann M., “Harnack Inequalities: an Introduction”, Bound. Value Probl., 2007, 81415  crossref  mathscinet  zmath  isi
    38. Pascal Auscher, Alan McIntosh, Emmanuel Russ, “Hardy Spaces of Differential Forms on Riemannian Manifolds”, J Geom Anal, 18:1 (2008), 192  crossref  mathscinet  zmath  isi
    39. El Maati Ouhabaz, César Poupaud, “Remarks on the Cwikel–Lieb–Rozenblum and Lieb–Thirring Estimates for Schrödinger Operators on Riemannian Manifolds”, Acta Appl Math, 2009  crossref  zmath
    40. Rogers L.G., Strichartz R.S., Teplyaev A., “Smooth Bumps, a Borel Theorem and Partitions of Smooth Functions on Pcf Fractals”, Trans. Am. Math. Soc., 361:4 (2009), 1765–1790  crossref  mathscinet  zmath  isi
    41. Barlow M.T., Deuschel J.-D., “Invariance Principle for the Random Conductance Model with Unbounded Conductances”, Ann. Probab., 38:1 (2010), 234–276  crossref  mathscinet  zmath  isi  elib
    43. Gyrya P., Saloff-Coste L., “Neumann and Dirichlet Heat Kernels in Inner Uniform Domains”, Asterisque, 2011, no. 336, 1+  mathscinet  isi
    44. Nadine Badr, Frédéric Bernicot, Emmanuel Russ, “Algebra properties for Sobolev spaces — applications to semilinear PDEs on manifolds”, JAMA, 118:2 (2012), 509  crossref
    45. Barlow M.T., Grigor'yan A., Kumagai T., “On the Equivalence of Parabolic Harnack Inequalities and Heat Kernel Estimates”, J. Math. Soc. Jpn., 64:4 (2012), 1091–1146  crossref  mathscinet  zmath  isi
    46. Coulhon T., Kerkyacharian G., Petrushev P., “Heat Kernel Generated Frames in the Setting of Dirichlet Spaces”, J. Fourier Anal. Appl., 18:5 (2012), 995–1066  crossref  mathscinet  zmath  isi
    47. Grigor'yan A., Telcs A., “Two-Sided Estimates of Heat Kernels on Metric Measure Spaces”, Ann. Probab., 40:3 (2012), 1212–1284  crossref  mathscinet  isi
    48. [Anonymous], “Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates”, Mem. Am. Math. Soc., 216:1015 (2012), 1+  mathscinet  isi
    49. Tuomo Kuusi, Rojbin Laleoglu, Juhana Siljander, José Miguel Urbano, “Hölder continuity for Trudinger’s equation in measure spaces”, Calc. Var, 45:1-2 (2012), 193  crossref
    50. Jia-Yong Wu, “-Liouville theorems on complete smooth metric measure spaces”, Bulletin des Sciences Mathématiques, 2013  crossref
    51. Fabrice Baudoin, Michel Bonnefont, Nicola Garofalo, “A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality”, Math. Ann, 2013  crossref
    52. Marola N., Masson M., “On the Harnack Inequality for Parabolic Minimizers in Metric Measure Spaces”, Tohoku Math. J., 65:4 (2013), 569–589  isi
    53. Capogna L., Citti G., Rea G., “A Subelliptic Analogue of Aronson-Serrin's Harnack Inequality”, Math. Ann., 357:3 (2013), 1175–1198  crossref  isi
    54. Rosenberg H., Schulze F., Spruck J., “The Half-Space Property and Entire Positive Minimal Graphs in M X R.”, J. Differ. Geom., 95:2 (2013), 321–336  isi
    55. Cerenzia M., Saloff-Coste L., “Discrete/Continuous Elliptic Harnack Inequality and Kernel Estimates for Functions of the Laplacian on a Graph”, N. Y. J. Math., 19 (2013), 487–509  isi
    56. Duzgun F.G., Marcellini P., Vespri V., “An Alternative Approach to the Holder Continuity of Solutions to Some Elliptic Equations”, Nonlinear Anal.-Theory Methods Appl., 94 (2014), 133–141  crossref  isi
    57. Alexander Grigor'yan, Jiaxin Hu, “Upper bounds of heat kernels on doubling spaces”, Mosc. Math. J., 14:3 (2014), 505–563  mathnet  crossref  mathscinet
    58. Jia-Yong Wu, Peng Wu, “Heat kernel on smooth metric measure spaces with nonnegative curvature”, Math. Ann, 2014  crossref
    59. Lanconelli E., Tralli G., Uguzzoni F., “Wiener-type tests from a two-sided Gaussian bound”, Ann. Mat. Pura Appl., 196:1 (2017), 217–244  crossref  mathscinet  zmath  isi  scopus
    60. S. Ishiwata, “Can one observe the bottleneckness of a space by the heat distribution?”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:3 (2017), 77–88  mathnet  crossref
  • Математический сборник - 1991 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:1732
    Full text:590
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020