|
This article is cited in 4 scientific papers (total in 4 papers)
Homogenization of elasticity problems on periodic composite structures
S. E. Pastukhova Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
Elasticity problems on a plane plate reinforced with a thin periodic network or in a 3-dimensional body reinforced with a thin periodic box skeleton are considered. The composite medium depends on two parameters approaching zero and responsible for the periodicity cell and the thickness of the reinforcing structure. The parameters can be dependent or independent.
For these problems Zhikov's method of ‘two-scale convergence with variable measure’ is used to derive the homogenization principle: the solution of the original problem reduces in a certain sense to the solution of the homogenized (or limiting) problem. The latter has a classical form. From the operator form of the homogenization principle, on the basis of the compactness principle in the $L^2$-space, which is also established, one obtains for the composite structure the Hausdorff convergence of the spectrum of the original problem to the spectrum of the limiting problem.
DOI:
https://doi.org/10.4213/sm1402
Full text:
PDF file (478 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2005, 196:7, 1033–1073
Bibliographic databases:
UDC:
517.9
MSC: 35B27, 74Kxx, 74Q05 Received: 07.10.2003 and 13.09.2004
Citation:
S. E. Pastukhova, “Homogenization of elasticity problems on periodic composite structures”, Mat. Sb., 196:7 (2005), 101–142; Sb. Math., 196:7 (2005), 1033–1073
Citation in format AMSBIB
\Bibitem{Pas05}
\by S.~E.~Pastukhova
\paper Homogenization of elasticity problems on periodic composite structures
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 7
\pages 101--142
\mathnet{http://mi.mathnet.ru/msb1402}
\crossref{https://doi.org/10.4213/sm1402}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2188371}
\zmath{https://zbmath.org/?q=an:1090.74044}
\elib{https://elibrary.ru/item.asp?id=9148946}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 7
\pages 1033--1073
\crossref{https://doi.org/10.1070/SM2005v196n07ABEH000947}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000232881000005}
\elib{https://elibrary.ru/item.asp?id=14663676}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844467680}
Linking options:
http://mi.mathnet.ru/eng/msb1402https://doi.org/10.4213/sm1402 http://mi.mathnet.ru/eng/msb/v196/i7/p101
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Zhikov, S. E. Pastukhova, “On the Trotter–Kato Theorem in a Variable Space”, Funct. Anal. Appl., 41:4 (2007), 264–270
-
S. E. Pastukhova, “Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems”, Sb. Math., 198:10 (2007), 1465–1494
-
Braides A., Chiadò Piat V., “Non convex homogenization problems for singular structures”, Netw. Heterog. Media, 3:3 (2008), 489–508
-
Cancedda A., “Spectral Homogenization For a Robin-Neumann Problem”, Boll. Unione Mat. Ital., 10:2 (2017), 199–222
|
Number of views: |
This page: | 380 | Full text: | 137 | References: | 41 | First page: | 1 |
|