RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1992, Volume 183, Number 2, Pages 3–20 (Mi msb1466)  

This article is cited in 7 scientific papers (total in 7 papers)

Some problems in approximation theory for a class of functions of finite smoothness

S. N. Kudryavtsev


Abstract: This paper concerns the problem of best accuracy in recovering functions from their values at a specified number of points, the problem of best approximation of partial differential operators by bounded operators, and the problem of the accuracy of approximation of one class by another for a class of functions with partial derivatives of a fixed order having moduli of continuity not exceeding a given modulus of continuity. The weak asymptotic behavior is established for the corresponding quantities.

Full text: PDF file (804 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1993, 75:1, 145–164

Bibliographic databases:

MSC: Primary 41A65, 41A46; Secondary 41A35
Received: 25.10.1989

Citation: S. N. Kudryavtsev, “Some problems in approximation theory for a class of functions of finite smoothness”, Mat. Sb., 183:2 (1992), 3–20; Russian Acad. Sci. Sb. Math., 75:1 (1993), 145–164

Citation in format AMSBIB
\Bibitem{Kud92}
\by S.~N.~Kudryavtsev
\paper Some problems in approximation theory for a~class of functions of finite smoothness
\jour Mat. Sb.
\yr 1992
\vol 183
\issue 2
\pages 3--20
\mathnet{http://mi.mathnet.ru/msb1466}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1166949}
\zmath{https://zbmath.org/?q=an:0774.41019|0766.41018}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..75..145K}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 75
\issue 1
\pages 145--164
\crossref{https://doi.org/10.1070/SM1993v075n01ABEH003377}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LG75100009}


Linking options:
  • http://mi.mathnet.ru/eng/msb1466
  • http://mi.mathnet.ru/eng/msb/v183/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. N. Kudryavtsev, “Recovering a function with its derivatives from function values at a given number of points”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 505–528  mathnet  crossref  mathscinet  zmath  isi
    2. S. N. Kudryavtsev, “Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness”, Sb. Math., 187:3 (1996), 385–402  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. S. N. Kudryavtsev, “Approximating one class of finitely differentiable functions by another”, Izv. Math., 61:2 (1997), 347–362  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. S. N. Kudryavtsev, “The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points”, Izv. Math., 62:1 (1998), 19–53  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. S. N. Kudryavtsev, “The Stechkin problem for partial derivation operators on classes of finitely smooth functions”, Math. Notes, 67:1 (2000), 61–68  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Proc. Steklov Inst. Math., 248 (2005), 268–277  mathnet  mathscinet  zmath
    7. Sh. U. Azhgaliev, N. Temirgaliev, “Informativeness of all the linear functionals in the recovery of functions in the classes $H_p^\omega$”, Sb. Math., 198:11 (2007), 1535–1551  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:201
    Full text:68
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019