|
Эта публикация цитируется в 31 научных статьях (всего в 31 статьях)
Об условиях существования классического решения модифицированной задачи Стефана (закон Гиббса–Томсона)
Е. В. Радкевич
Аннотация:
Получены достаточные условия, близкие к необходимым, существования (единственного для $\sigma>0$, $\beta>0$) решения модифицированной задачи Стефана на малом временном интервале.
Полный текст:
PDF файл (1062 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Russian Academy of Sciences. Sbornik. Mathematics, 1993, 75:1, 221–246
Реферативные базы данных:
MSC: Primary 35K15, 80A22; Secondary 35R35 Поступила в редакцию: 27.02.1991
Образец цитирования:
Е. В. Радкевич, “Об условиях существования классического решения модифицированной задачи Стефана (закон Гиббса–Томсона)”, Матем. сб., 183:2 (1992), 77–101; E. V. Radkevich, “On conditions for the existence of a classical solution of the modified Stefan problem (the Gibbs–Thomson law)”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 221–246
Цитирование в формате AMSBIB
\RBibitem{Rad92}
\by Е.~В.~Радкевич
\paper Об~условиях существования классического решения модифицированной задачи Стефана (закон Гиббса--Томсона)
\jour Матем. сб.
\yr 1992
\vol 183
\issue 2
\pages 77--101
\mathnet{http://mi.mathnet.ru/msb1468}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1166953}
\zmath{https://zbmath.org/?q=an:0772.35087}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..75..221R}
\transl
\by E.~V.~Radkevich
\paper On conditions for the existence of a~classical solution of the modified Stefan problem (the Gibbs--Thomson law)
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 75
\issue 1
\pages 221--246
\crossref{https://doi.org/10.1070/SM1993v075n01ABEH003381}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LG75100013}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/msb1468 http://mi.mathnet.ru/rus/msb/v183/i2/p77
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Radkevich E., Eshonkulov B., “On the Existence of the Classical Solution of the Glassy Polymer Impregnation Problem”, Dokl. Akad. Nauk, 325:4 (1992), 668–673
-
Е. В. Радкевич, “О спектре пучка задачи Веригина–Маскет”, Матем. сб., 184:9 (1993), 41–88
; E. V. Radkevich, “On the spectrum of the pencil in the Verigin–Muskat problem”, Russian Acad. Sci. Sb. Math., 80:1 (1995), 33–73 -
Radkevich E., “On the Asymptotic Solutions of a Phase Field System”, Differ. Equ., 29:3 (1993), 418–429
-
Radkevich E., “The Heat Stefan Wave”, Dokl. Akad. Nauk, 328:6 (1993), 657–661
-
Е. В. Радкевич, Б. О. Этонкулов, “О существовании классического решения задачи о набухании стекловидных полимеров”, Матем. заметки, 57:6 (1995), 875–888
; E. V. Radkevich, B. O. Ètonkulov, “On the existence of classical solutions of the problem on swelling of glassy polymers”, Math. Notes, 57:6 (1995), 615–624 -
В. Г. Данилов, Г. А. Омельянов, Е. В. Радкевич, “Обоснование асимптотики решения системы фазового поля и модифицированная задача Стефана”, Матем. сб., 186:12 (1995), 63–80
; V. G. Danilov, G. A. Omel'yanov, E. V. Radkevich, “Justification of asymptotics of solutions of the phase-field equations and a modified Stefan problem”, Sb. Math., 186:12 (1995), 1753–1771 -
Danilov V., Omelyanov G., Radkevich E., “The Modified Stefan Problem as a Limit of Asymptotic Solution for Phase Field System”, Dokl. Akad. Nauk, 343:5 (1995), 586–589
-
Danilov V., Omelyanov G., Radkevich E., “Asymptotics of the Solution to the Phase Field System and the Modified Stefan Problem”, Differ. Equ., 31:3 (1995), 446–454
-
Fahuai Yi, “A note on the classical solution of a two-dimensional superconductor free boundary problem”, Eur J Appl Math, 7:2 (1996)
-
Yi F., “Classical Solution of Quasi-Stationary Stefan Problem”, Chin. Ann. Math. Ser. B, 17:2 (1996), 175–186
-
Chen X., Hong J., Yi F., “Existence, Uniqueness, and Regularity of Classical Solutions of the Mullins-Sekerka Problem”, Commun. Partial Differ. Equ., 21:11-12 (1996), 1705–1727
-
Tao Y., “Classical Solution of Verigin Problem with Surface Tension”, Chin. Ann. Math. Ser. B, 18:3 (1997), 393–404
-
Omelyanov G., Radkevich E., Danilov V., “The Problem of the Phase Transition in the Phase Field System”, Dokl. Akad. Nauk, 352:6 (1997), 731–734
-
Yi F., “Asymptotic Behaviour of the Solutions of the Supercooled Stefan Problem”, Proc. R. Soc. Edinb. Sect. A-Math., 127:Part 1 (1997), 181–190
-
Yi Fahuai, “A free boundary problem of type-I superconductivity”, Acta Mathematicae Applicatae Sinica English Series, 14:1 (1998), 48
-
Omel'yanov G. Danilov V. Radkevich E., “Asymptotic Solution of the Conserved Phase Field System in the Fast Relaxation Case”, Eur. J. Appl. Math., 9:Part 1 (1998), 1–21
-
Yoshiaki Kusaka, Atusi Tani, “On the Classical Solvability of the Stefan Problem in a Viscous Incompressible Fluid Flow”, SIAM J Math Anal, 30:3 (1999), 584
-
Yi F., Liu J., “Vanishing Specific Heat for the Classical Solutions of a Multidimensional Stefan Problem with Kinetic Condition”, Q. Appl. Math., 57:4 (1999), 661–672
-
Rodrigues J. Solonnikov V. Yi F., “On a Parabolic System with Time Derivative in the Boundary Conditions and Related Free Boundary Problems”, Math. Ann., 315:1 (1999), 61–95
-
Yi F., “On a Three-Dimensional Free Boundary Problem in Superconductivity Involving Mean Curvature”, Proc. R. Soc. Edinb. Sect. A-Math., 131:Part 1 (2001), 205–224
-
Christof Eck, Peter Knabner, Sergey Korotov, “A Two-Scale Method for the Computation of Solid–Liquid Phase Transitions with Dendritic Microstructure”, Journal of Computational Physics, 178:1 (2002), 58
-
Fahuai Yi, Yuqing Liu, “Two-Phase Stefan Problem as the Limit Case of Two-Phase Stefan Problem with Kinetic Condition”, Journal of Differential Equations, 183:1 (2002), 189
-
Schweizer B., “A Stable Time Discretization of the Stefan Problem with Surface Tension”, SIAM J. Numer. Anal., 40:3 (2002), 1184–1205
-
Fahuai Yi, “Global classical solution of Muskat free boundary problem”, Journal of Mathematical Analysis and Applications, 288:2 (2003), 442
-
Solonnikov V., “Lectures on Evolution Free Boundary Problems: Classical Solutions”, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, 1812, ed. Ambrosio L. Mimura M. Deckelnick K. Solonnikov V. Dziuk G. Soner H. Colli P. Rodrigues J., Springer-Verlag Berlin, 2003, 123–175
-
Eck C., “Homogenization of a Phase Field Model for Binary Mixtures”, Multiscale Model. Simul., 3:1 (2005), 1–27
-
Pruess J., Simonett G., “Stability of Equilibria for the Stefan Problem with Surface Tension”, SIAM J. Math. Anal., 40:2 (2008), 675–698
-
В. И. Войтицкий, Н. Д. Копачевский, П. А. Старков, “Многокомпонентные задачи сопряжения и вспомогательные абстрактные краевые задачи”, Труды Крымской осенней математической школы-симпозиума, СМФН, 34, РУДН, М., 2009, 5–44
; V. I. Voititskiy, N. D. Kopachevskiy, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Journal of Mathematical Sciences, 170:2 (2010), 131–172 -
Kopachevsky N.D., Voytitsky V.I., “On the Modified Spectral Stefan Problem and its Abstract Generalizations”, Modern Analysis and Applications: Mark Krein Centenary Conference, Vol 2, Operator Theory Advances and Applications, 191, eds. Adamyan V., Berezansky Y., Gohberg I., Gorbachuk M., Gorbachuk V., Kochubei A., Langer H., Popov G., Birkhauser Verlag Ag, 2009, 381–394
-
Ch. Eck, B. Jadamba, P. Knabner, “Error Estimates for a Finite Element Discretization of a Phase Field Model for Mixtures”, SIAM J Numer Anal, 47:6 (2010), 4429
-
Pruess J. Simonett G. Zacher R., “Qualitative Behavior of Solutions for Thermodynamically Consistent Stefan Problems with Surface Tension”, Arch. Ration. Mech. Anal., 207:2 (2013), 611–667
|
Просмотров: |
Эта страница: | 622 | Полный текст: | 148 | Литература: | 38 | Первая стр.: | 1 |
|