RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2007, Volume 198, Number 7, Pages 45–62 (Mi msb1483)  

This article is cited in 11 scientific papers (total in 11 papers)

A class of integral equations of convolution type

L. G. Arabadzhyanab, A. S. Khachatryanb

a Institute of Mathematics, National Academy of Sciences of Armenia
b Armenian State Teachers' Training University named after Khachatur Abovian

Abstract: Conditions (both necessary and sufficient) for the existence of a non-trivial bounded solution $B$ of the integral equation
$$ B(x)=\int_{-\infty}^{+\infty}\lambda(t)K(x-t)B(t) dt,\qquad x\in \mathbb R^1, $$
are obtained for fixed functions $K$ and $\lambda$ satisfying the following conditions:
\begin{gather*} 0\le K\in L_1(\mathbb R^1), \qquad \int_{-\infty}^\infty K(t) dt=1,
\int_{-\infty}^\infty t^2K(t) dt<\infty, \qquad \nu\stackrel{\mathrm{def}}{=}\int_{-\infty}^{+\infty}tK(t) dt\ne0,
0\le\lambda(x)\le1, \qquad x\in \mathbb R^1, \qquad \lambda\not\equiv0. \end{gather*}
The existence of the limits $B(\pm\infty)=\lim_{x\to\pm\infty}B(x)$ is proved and a relation between these limits, the first-order moment $\nu$, and the integral norm of $B$ is found.
Bibliography: 9 titles.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm1483

Full text: PDF file (505 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2007, 198:7, 949–966

Bibliographic databases:

UDC: 517.968.2
MSC: Primary 45E10; Secondary 47G10
Received: 26.12.2005 and 02.10.2006

Citation: L. G. Arabadzhyan, A. S. Khachatryan, “A class of integral equations of convolution type”, Mat. Sb., 198:7 (2007), 45–62; Sb. Math., 198:7 (2007), 949–966

Citation in format AMSBIB
\Bibitem{AraKha07}
\by L.~G.~Arabadzhyan, A.~S.~Khachatryan
\paper A class of integral equations of convolution type
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 7
\pages 45--62
\mathnet{http://mi.mathnet.ru/msb1483}
\crossref{https://doi.org/10.4213/sm1483}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2354533}
\zmath{https://zbmath.org/?q=an:1155.45002}
\elib{https://elibrary.ru/item.asp?id=9541671}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 7
\pages 949--966
\crossref{https://doi.org/10.1070/SM2007v198n07ABEH003868}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250726000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049041045}


Linking options:
  • http://mi.mathnet.ru/eng/msb1483
  • https://doi.org/10.4213/sm1483
  • http://mi.mathnet.ru/eng/msb/v198/i7/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kh. A. Khachatryan, “O reshenii odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina–Nemytskogo na vsei osi”, Tr. In-ta matem., 21:2 (2013), 154–161  mathnet
    2. Kh. A. Khachatryan, “On positive solutions of one class of nonlinear integral equations of Hammerstein–Nemytskiĭ type on the whole axis”, Trans. Moscow Math. Soc., 75 (2014), 1–12  mathnet  crossref  elib
    3. Kh. A. Khachatryan, “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izv. Math., 79:2 (2015), 411–430  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Kh. A. Khachatryan, T. G. Sardaryan, “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii tipa Urysona na vsei pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 17:1 (2017), 40–50  mathnet  crossref  elib
    5. Khachatryan Kh.A., “On Solvability of One Class of Nonlinear Integral Equations on Whole Line With a Weak Singularity At Zero”, P-Adic Numbers Ultrametric Anal. Appl., 9:4 (2017), 292–305  crossref  mathscinet  zmath  isi  scopus
    6. Kh. A. Khachatryan, H. S. Petrosyan, “One parameter families of positive solutions of some classes of convolution type nonlinear integral equations”, J. Math. Sci., 231:2 (2018), 153–167  mathnet  crossref  crossref
    7. Khachatryan Kh.A., Terdzhyan Ts.E., Sardanyan T.G., “On the Solvability of One System of Nonlinear Hammerstein-Type Integral Equations on the Semiaxis”, Ukr. Math. J., 69:8 (2018), 1287–1305  crossref  mathscinet  zmath  isi  scopus
    8. Kh. A. Khachatryan, S. M. Andriyan, A. A. Sisakyan, “On the solvability of a class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 2, 54–73  mathnet
    9. S. M. Andriyan, A. K. Kroyan, Kh. A. Khachatryan, “On solvability of class of nonlinear integral equations in $p$-adic string theory”, Ufa Math. J., 10:4 (2018), 12–23  mathnet  crossref  isi
    10. Kh. A. Khachatryan, A. K. Kroyan, “Suschestvovanie nechetnogo resheniya dlya odnoi granichnoi zadachi so stepennoi nelineinostyu”, Sib. zhurn. chist. i prikl. matem., 18:4 (2018), 88–96  mathnet  crossref
    11. Kh. A. Khachatryan, “Solvability of some classes of nonlinear singular boundary value problems in the theory of $p$-adic open–closed strings”, Theoret. and Math. Phys., 200:1 (2016), 1015–1025  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:471
    Full text:160
    References:42
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020