RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2006, Volume 197, Number 1, Pages 25–38 (Mi msb1494)  

This article is cited in 3 scientific papers (total in 3 papers)

Poincaré biextension and idèles on an algebraic curve

S. O. Gorchinskiy

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The Weil pairing of two elements of the torsion of the Jacobian of an algebraic curve can be expressed in terms of the product of the local Hilbert symbols of two special idèles associated with the torsion elements of the Jacobian. On the other hand, Arbarello, De Concini, and Kac have constructed a central extension of the group of idèles on an algebraic curve in which the commutator is also equal up to a sign to the product of all the local Hilbert symbols of two idèles.
The aim of the paper is to explain this similarity. It turns out that there exists a close connection between the Poincaré biextension over the square of the Jacobian defining the Weil pairing and the central extension constructed by Arbarello, de Concini, and Kac. The latter is a quotient of a certain biextension associated with the central extension.
Bibliography: 6 titles.

DOI: https://doi.org/10.4213/sm1494

Full text: PDF file (467 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2006, 197:1, 23–36

Bibliographic databases:

UDC: 512.7
MSC: 14H40, 14H25, 19F15
Received: 31.03.2005

Citation: S. O. Gorchinskiy, “Poincaré biextension and idèles on an algebraic curve”, Mat. Sb., 197:1 (2006), 25–38; Sb. Math., 197:1 (2006), 23–36

Citation in format AMSBIB
\Bibitem{Gor06}
\by S.~O.~Gorchinskiy
\paper Poincar\'e biextension and id\`eles on an algebraic curve
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 1
\pages 25--38
\mathnet{http://mi.mathnet.ru/msb1494}
\crossref{https://doi.org/10.4213/sm1494}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2230130}
\zmath{https://zbmath.org/?q=an:1134.14304}
\elib{https://elibrary.ru/item.asp?id=9188969}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 1
\pages 23--36
\crossref{https://doi.org/10.1070/SM2006v197n01ABEH003744}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000237780600002}
\elib{https://elibrary.ru/item.asp?id=18102368}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744768626}


Linking options:
  • http://mi.mathnet.ru/eng/msb1494
  • https://doi.org/10.4213/sm1494
  • http://mi.mathnet.ru/eng/msb/v197/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. O. Gorchinskiy, “An adelic resolution for homology sheaves”, Izv. Math., 72:6 (2008), 1187–1252  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Gorchinskiy S., “Notes on the Biextension of Chow Groups”, Motives and Algebraic Cycles: a Celebration in Honour of Spencer J. Bloch, Fields Institute Communications, 56, 2009, 111–148  mathscinet  zmath  isi
    3. L. A. Takhtajan, “Quantum field theories on algebraic curves. I. Additive bosons”, Izv. Math., 77:2 (2013), 378–406  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:397
    Full text:142
    References:53
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020