|
This article is cited in 1 scientific paper (total in 1 paper)
Splittability of $p$-ary functions
M. I. Anokhin M. V. Lomonosov Moscow State University
Abstract:
A function $\varphi$ from an $n$-dimensional vector space $V$ over
a field $F$ of $p$ elements (where $p$ is a prime) into $F$
is called splittable if
$\varphi(u+w)=\psi(u)+\chi(w)$, $u\in U$,
$w\in W$, for some non-trivial subspaces $U$ and $W$
such that $U\oplus W=V$ and for some functions $\psi\colon U\to F$ and
$\chi\colon W\to F$. It is explained how one can verify in time polynomial
in
$\log p^{p^n}$ whether a function is splittable and, if it is,
find a representation of it in the above-described form. Other
questions relating to the splittability of functions are considered.
Bibliography: 3 titles.
DOI:
https://doi.org/10.4213/sm1529
Full text:
PDF file (464 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2007, 198:7, 935–947
Bibliographic databases:
UDC:
512.642+519.712.43
MSC: 15A03, 68Q17 Received: 14.02.2006 and 30.10.2006
Citation:
M. I. Anokhin, “Splittability of $p$-ary functions”, Mat. Sb., 198:7 (2007), 31–44; Sb. Math., 198:7 (2007), 935–947
Citation in format AMSBIB
\Bibitem{Ano07}
\by M.~I.~Anokhin
\paper Splittability of $p$-ary functions
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 7
\pages 31--44
\mathnet{http://mi.mathnet.ru/msb1529}
\crossref{https://doi.org/10.4213/sm1529}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2354532}
\zmath{https://zbmath.org/?q=an:1171.94015}
\elib{https://elibrary.ru/item.asp?id=9541670}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 7
\pages 935--947
\crossref{https://doi.org/10.1070/SM2007v198n07ABEH003867}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250726000002}
\elib{https://elibrary.ru/item.asp?id=18098790}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35948932194}
Linking options:
http://mi.mathnet.ru/eng/msb1529https://doi.org/10.4213/sm1529 http://mi.mathnet.ru/eng/msb/v198/i7/p31
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. I. Anokhin, “Teoriya polnykh ortogonalnykh pryamykh razlozhenii vektornykh prostranstv”, PDM, 2012, no. 1(15), 11–49
|
Number of views: |
This page: | 233 | Full text: | 96 | References: | 34 | First page: | 1 |
|