RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2007, Volume 198, Number 3, Pages 77–90 (Mi msb1532)  

This article is cited in 3 scientific papers (total in 3 papers)

Racah operators for principal series of representations of the group $\mathrm {SL}(2,\mathbb C)$

R. S. Ismagilov

N. E. Bauman Moscow State Technical University

Abstract: As a generalization of the well-known Racah coefficients (which are usually defined for finite-dimensional representations of semisimple Lie groups), the concept of Racah operators is introduced for locally compact groups with a ‘nice’ dual space. Explicit expressions for these operators are presented for $\operatorname{PSL}(2,\mathbb C)$.
Bibliography: 8 titles.

DOI: https://doi.org/10.4213/sm1532

Full text: PDF file (505 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2007, 198:3, 369–381

Bibliographic databases:

UDC: 517.986.6
MSC: Primary 22E46; Secondary 33C80
Received: 17.02.2006 and 30.10.2006

Citation: R. S. Ismagilov, “Racah operators for principal series of representations of the group $\mathrm {SL}(2,\mathbb C)$”, Mat. Sb., 198:3 (2007), 77–90; Sb. Math., 198:3 (2007), 369–381

Citation in format AMSBIB
\Bibitem{Ism07}
\by R.~S.~Ismagilov
\paper Racah operators for principal
series of representations of the group
$\mathrm {SL}(2,\mathbb C)$
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 3
\pages 77--90
\mathnet{http://mi.mathnet.ru/msb1532}
\crossref{https://doi.org/10.4213/sm1532}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2354280}
\zmath{https://zbmath.org/?q=an:1149.22011}
\elib{http://elibrary.ru/item.asp?id=9469181}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 3
\pages 369--381
\crossref{https://doi.org/10.1070/SM2007v198n03ABEH003840}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000247946700003}
\elib{http://elibrary.ru/item.asp?id=18316235}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547843455}


Linking options:
  • http://mi.mathnet.ru/eng/msb1532
  • https://doi.org/10.4213/sm1532
  • http://mi.mathnet.ru/eng/msb/v198/i3/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. A. Valinevich, S. E. Derkachev, A. P. Isaev, “SOS-predstavlenie dlya $SL(2,\mathbb C)$-invariantnogo $R$-operatora i diagrammy Feinmana”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 24, Zap. nauchn. sem. POMI, 465, POMI, SPb., 2017, 82–104  mathnet
    2. Chan Ch.-Ts., Mironov A., Morozov A., Sleptsov A., “Orthogonal Polynomials in Mathematical Physics”, Rev. Math. Phys., 30:6, SI (2018), 1840005  crossref  mathscinet  zmath  isi  scopus
    3. S. È. Derkachev, V. P. Spiridonov, “The $6j$-symbols for the $SL(2,\mathbb C)$ group”, Theoret. and Math. Phys., 198:1 (2019), 29–47  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:291
    Full text:106
    References:27
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019