RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2007, Volume 198, Number 1, Pages 127–158 (Mi msb1554)  

This article is cited in 3 scientific papers (total in 3 papers)

Convection of a very viscous and non-heat-conductive fluid

V. I. Yudovich

Rostov State University

Abstract: The asymptotic model of Oberbeck–Boussinesq convection is considered in the case when the heat conductivity $\delta$ is equal to zero and the viscosity $\mu=+\infty$. The global existence and uniqueness results are proved for the basic initial-boundary-value problem; both classical and generalized solutions are considered. It is shown that each solution approaches an equilibrium as $t\to\mp\infty$.
Bibliography: 41 titles.

DOI: https://doi.org/10.4213/sm1554

Full text: PDF file (698 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2007, 198:1, 117–146

Bibliographic databases:

UDC: 536.25+517.958
MSC: 76D, 76R10
Received: 06.04.2006

Citation: V. I. Yudovich, “Convection of a very viscous and non-heat-conductive fluid”, Mat. Sb., 198:1 (2007), 127–158; Sb. Math., 198:1 (2007), 117–146

Citation in format AMSBIB
\Bibitem{Yud07}
\by V.~I.~Yudovich
\paper Convection of a very viscous and non-heat-conductive fluid
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 1
\pages 127--158
\mathnet{http://mi.mathnet.ru/msb1554}
\crossref{https://doi.org/10.4213/sm1554}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2330688}
\zmath{https://zbmath.org/?q=an:1139.76053}
\elib{http://elibrary.ru/item.asp?id=9450882}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 1
\pages 117--146
\crossref{https://doi.org/10.1070/SM2007v198n01ABEH003831}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000246564600006}
\elib{http://elibrary.ru/item.asp?id=14700302}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249882202}


Linking options:
  • http://mi.mathnet.ru/eng/msb1554
  • https://doi.org/10.4213/sm1554
  • http://mi.mathnet.ru/eng/msb/v198/i1/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu.G. Prokhorov, “The degree of $ \mathbb Q$-Fano threefolds”, Sb. Math, 198:11 (2007), 1683  mathnet  crossref  mathscinet  zmath  scopus
    2. Il'ya.V. Karzhemanov, “On Fano threefolds with canonical Gorenstein singularities”, Sb. Math, 200:8 (2009), 1215  mathnet  crossref  mathscinet  scopus
    3. Knutsen A.L., Lopez A.F., Muñoz R., “On the extendability of projective surfaces and a genus bound for Enriques-Fano threefolds”, J. Differential Geom., 88:3 (2011), 483–518  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:551
    Full text:150
    References:44
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019