RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2007, Volume 198, Number 4, Pages 117–134 (Mi msb1575)  

This article is cited in 4 scientific papers (total in 4 papers)

On Fano–Enriques threefolds

Yu. G. Prokhorov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $U\subset \mathbb P^N$ be a projective variety that is not a cone and whose hyperplane sections are smooth Enriques surfaces. It is proved that the degree of such $U$ is at most 32 and this bound is sharp.
Bibliography: 16 titles.

DOI: https://doi.org/10.4213/sm1575

Full text: PDF file (586 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2007, 198:4, 559–574

Bibliographic databases:

UDC: 512.77
MSC: 14J45, 14J28
Received: 22.05.2006

Citation: Yu. G. Prokhorov, “On Fano–Enriques threefolds”, Mat. Sb., 198:4 (2007), 117–134; Sb. Math., 198:4 (2007), 559–574

Citation in format AMSBIB
\Bibitem{Pro07}
\by Yu.~G.~Prokhorov
\paper On Fano--Enriques threefolds
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 4
\pages 117--134
\mathnet{http://mi.mathnet.ru/msb1575}
\crossref{https://doi.org/10.4213/sm1575}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2352363}
\zmath{https://zbmath.org/?q=an:1174.14035}
\elib{http://elibrary.ru/item.asp?id=9488293}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 4
\pages 559--574
\crossref{https://doi.org/10.1070/SM2007v198n04ABEH003849}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000247946700012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547839546}


Linking options:
  • http://mi.mathnet.ru/eng/msb1575
  • https://doi.org/10.4213/sm1575
  • http://mi.mathnet.ru/eng/msb/v198/i4/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. G. Prokhorov, “The degree of $\mathbb Q$-Fano threefolds”, Sb. Math., 198:11 (2007), 1683–1702  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. I. V. Karzhemanov, “On Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 200:8 (2009), 1215–1246  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Knutsen A.L., Lopez A.F., Munoz R., “On the Extendability of Projective Surfaces and a Genus Bound for Enriques-Fano Threefolds”, J. Differ. Geom., 88:3 (2011), 483–518  crossref  mathscinet  zmath  isi  scopus
    4. Lee N.-H., “Calabi-Yau Double Coverings of Fano-Enriques Threefolds”, Proc. Edinb. Math. Soc., 62:1 (2019), 107–114  crossref  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:291
    Full text:79
    References:32
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019