RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2006, Volume 197, Number 7, Pages 47–76 (Mi msb1592)  

This article is cited in 3 scientific papers (total in 4 papers)

Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds

V. A. Mirzoyanab

a State Engineering University of Armenia
b European Regional Academy of the Caucasus

Abstract: Structure results are proved for submanifolds of Euclidean spaces with semiparallel Ricci tensor under certain additional conditions. Minimal submanifolds are studied in greater detail. A geometric description of a class of normally flat semi-Einstein submanifolds with multiple principal curvature vectors is presented.
Bibliography: 36 titles.

DOI: https://doi.org/10.4213/sm1592

Full text: PDF file (656 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2006, 197:7, 997–1024

Bibliographic databases:

UDC: 514.752
MSC: 53B20, 53B25
Received: 23.05.2005

Citation: V. A. Mirzoyan, “Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds”, Mat. Sb., 197:7 (2006), 47–76; Sb. Math., 197:7 (2006), 997–1024

Citation in format AMSBIB
\Bibitem{Mir06}
\by V.~A.~Mirzoyan
\paper Structure theorems for Ricci-semisymmetric submanifolds
and geometric description of a class of minimal semi-Einstein
submanifolds
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 7
\pages 47--76
\mathnet{http://mi.mathnet.ru/msb1592}
\crossref{https://doi.org/10.4213/sm1592}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2277331}
\zmath{https://zbmath.org/?q=an:1143.53021}
\elib{http://elibrary.ru/item.asp?id=9296523}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 997--1024
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003786}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241860100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751029768}


Linking options:
  • http://mi.mathnet.ru/eng/msb1592
  • https://doi.org/10.4213/sm1592
  • http://mi.mathnet.ru/eng/msb/v197/i7/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Oshemkov, A. B. Skopenkov, “Studencheskie olimpiady po geometrii i topologii”, Matem. prosv., ser. 3, 11, Izd-vo MTsNMO, M., 2007, 131–140  mathnet
    2. V. A. Mirzoyan, “Classification of a class of minimal semi-Einstein submanifolds with an integrable conullity distribution”, Sb. Math., 199:3 (2008), 385–409  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. A. Mirzoyan, “Normally flat semi-Einstein submanifolds of Euclidean spaces”, Izv. Math., 75:6 (2011), 1135–1164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. A. Mirzoyan, G. S. Machkalyan, “Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces”, Russian Math. (Iz. VUZ), 56:9 (2012), 14–24  mathnet  crossref  mathscinet
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:329
    Full text:80
    References:35
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019