|
This article is cited in 15 scientific papers (total in 15 papers)
Del Pezzo surfaces with log-terminal singularities
V. V. Nikulin
Abstract:
A new method is applied to the study of del Pezzo surfaces $Z$ with log-terminal singularities, taken from the theory of reflection groups in Lobachevsky space. This method yields bounds on the Picard number $\rho(Y)$ of a minimal resolution $Y$ of singularities of $Z$, assuming that the indices or the multiplicities of the singularities of $Z$ are bounded, and under an extra (conjecturally inessential) condition of generality on the singularities of $Z$.
Bibliography: 25 titles.
Full text:
PDF file (1052 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Sbornik, 1990, 66:1, 231–248
Bibliographic databases:
UDC:
512.744
MSC: Primary 14J26; Secondary 14J05, 14J17, 14J25, 14E30, 51F15, 05C99 Received: 12.01.1988
Citation:
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities”, Mat. Sb., 180:2 (1989), 226–243; Math. USSR-Sb., 66:1 (1990), 231–248
Citation in format AMSBIB
\Bibitem{Nik89}
\by V.~V.~Nikulin
\paper Del Pezzo surfaces with log-terminal singularities
\jour Mat. Sb.
\yr 1989
\vol 180
\issue 2
\pages 226--243
\mathnet{http://mi.mathnet.ru/msb1607}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=993456}
\zmath{https://zbmath.org/?q=an:0704.14030|0674.14024}
\transl
\jour Math. USSR-Sb.
\yr 1990
\vol 66
\issue 1
\pages 231--248
\crossref{https://doi.org/10.1070/SM1990v066n01ABEH001314}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1990DK06800013}
Linking options:
http://mi.mathnet.ru/eng/msb1607 http://mi.mathnet.ru/eng/msb/v180/i2/p226
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. II”, Math. USSR-Izv., 33:2 (1989), 355–372
-
V. A. Alexeev, “Fractional indices of log Del Pezzo surfaces”, Math. USSR-Izv., 33:3 (1989), 613–629
-
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. III”, Math. USSR-Izv., 35:3 (1990), 657–675
-
V. V. Nikulin, “Algebraic three-folds and the diagram method”, Math. USSR-Izv., 37:1 (1991), 157–189
-
R. Blache, “Two aspects of log terminal surface singularities”, Abh Math Semin Univ Hambg, 64:1 (1994), 59
-
Nikulin V., “On the Picard Number of Fano 3-Folds with Terminal Singularities”, J. Math. Kyoto Univ., 34:3 (1994), 495–529
-
R. Blache, “Riemann-Roch theorem for normal surfaces and applications”, Abh Math Semin Univ Hambg, 65:1 (1995), 307
-
Nikulin V., “Basis of the Diagram Method for Generalized Reflection Groups in Lobachevsky Spaces and Algebraic Surfaces with Nef Anticanonical Class”, Int. J. Math., 7:1 (1996), 71–108
-
Yu. G. Prokhorov, V. V. Shokurov, “The first main theorem on complements: from global to local”, Izv. Math., 65:6 (2001), 1169–1196
-
Lin, JY, “Birational unboundedness of Q-Fano threefolds”, International Mathematics Research Notices, 2003, no. 6, 301
-
Dais D.I., “Classification of Toric Log Del Pezzo Surfaces Having Picard Number 1 and Index <= 3”, Results Math., 54:3-4 (2009), 219–252
-
Okada T., “On the Birational Unboundedness of Higher Dimensional Q-Fano Varieties”, Math. Ann., 345:1 (2009), 195–212
-
Kasprzyk A.M., Kreuzer M., Nill B., “On the Combinatorial Classification of Toric Log Del Pezzo Surfaces”, LMS J. Comput. Math., 13 (2010), 33–46
-
Hideo Kojima, Takeshi Takahashi, “Normal del Pezzo surfaces of rank one with log canonical singularities”, Journal of Algebra, 360 (2012), 53
-
G. D. Noce, “On the Picard Number of Singular Fano Varieties”, International Mathematics Research Notices, 2012
|
Number of views: |
This page: | 394 | Full text: | 102 | References: | 23 | First page: | 1 |
|