General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 1989, Volume 180, Number 8, Pages 1092–1118 (Mi msb1651)  

This article is cited in 50 scientific papers (total in 50 papers)

Topological groups and Dugundji compacta

V. V. Uspenskii

Abstract: A compact space $X$ is called a Dugundji compactum if for every compact $Y$ containing $X$, there exists a linear extension operator
$$\Lambda\colon C(X)\to C(Y),$$
which preserves nonnegativity and maps constants into constants. It is known that every compact group is a Dugundji compactum. In this paper we show that compacta connected in a natural way with topological groups enjoy the same property. For example, in each of the following cases, the compact space $X$ is a Dugundji compactum:
1) $X$ is a retract of an arbitrary topological group;
2) $X=\beta P$, where $P$ is a pseudocompact space on which some $\aleph_0$-bounded topological group acts transitively and continuously.
Bibliography: 57 titles.

Full text: PDF file (1803 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1990, 67:2, 555–580

Bibliographic databases:

UDC: 512.546
MSC: Primary 22C05, 54D30; Secondary 54B25, 54C15
Received: 16.06.1988

Citation: V. V. Uspenskii, “Topological groups and Dugundji compacta”, Mat. Sb., 180:8 (1989), 1092–1118; Math. USSR-Sb., 67:2 (1990), 555–580

Citation in format AMSBIB
\by V.~V.~Uspenskii
\paper Topological groups and Dugundji compacta
\jour Mat. Sb.
\yr 1989
\vol 180
\issue 8
\pages 1092--1118
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 2
\pages 555--580

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Tkachenko, “Maps improving the properties of spaces”, Russian Math. Surveys, 48:1 (1993), 191–192  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Pasynkov B., “On Inverse Systems and Cardinal Functions of Topological-Spaces”, Topology Appl., 54:1-3 (1993), 97–110  crossref  mathscinet  zmath  isi
    3. SALVADOR HERNÁNDEZ, MANUEL SANCHIS, “Dugundji Spaces in the Coset Space G/H”, Ann N Y Acad Sci, 728:1 general (1994), 262  crossref  mathscinet  zmath
    4. Tkacenko M., “M-Mappings and the Cellularity of Spaces”, Topology Appl., 57:2-3 (1994), 183–207  crossref  mathscinet  zmath  isi
    5. W.W Comfort, F.Javier Trigos-Arrieta, “Locally pseudocompact topological groups”, Topology and its Applications, 62:3 (1995), 263  crossref  mathscinet  zmath
    6. P.J. COLLINS, P.M. GARTSIDE, “Metrisation, Topological Groups, and Compacta”, Ann N Y Acad Sci, 806:1 papers o (1996), 106  crossref  mathscinet  zmath  adsnasa
    7. Shakhmatov D., Valov V., “A Characterization of Dugundji Spaces via Set-Valued Maps”, Topology Appl., 74:1-3 (1996), 109–121  crossref  mathscinet  zmath  isi
    8. Gulko A., “Rectifiable Spaces”, Topology Appl., 68:2 (1996), 107–112  crossref  mathscinet  zmath  isi
    9. P.M. Gartside, E.A. Reznichenko, O.V. Sipacheva, “Mal'tsev and retral spaces”, Topology and its Applications, 80:1-2 (1997), 115  crossref  mathscinet  zmath
    10. E.A. Reznichenko, V.V. Uspenskij, “Pseudocompact Mal'tsev spaces”, Topology and its Applications, 86:1 (1998), 83  crossref  mathscinet  zmath
    11. Manuel Sanchis, “Continuous functions on locally pseudocompact groups”, Topology and its Applications, 86:1 (1998), 5  crossref  mathscinet  zmath
    12. Michael Megrelishvili (Levy), Tzvi Scarr, “Constructing Tychonoff G-spaces which are not G-Tychonoff”, Topology and its Applications, 86:1 (1998), 69  crossref  mathscinet  zmath
    13. Mikhail Tkačenko, “Introduction to topological groups”, Topology and its Applications, 86:3 (1998), 179  crossref  mathscinet  zmath
    14. Tkachenko M., “Topological Groups for Topologists: Part II”, BOL. SOC. MAT. MEX., 6:1 (2000), 1–41  mathscinet  zmath  isi
    15. Arhangel'skii A., “Topological Groups and C-Embeddings”, Topology Appl., 115:3 (2001), 265–289  crossref  mathscinet  zmath  isi
    16. Arhangel'skii A., “Diagonal Structures on Topological Spaces”, Topology Appl., 125:3 (2002), 419–446  crossref  mathscinet  zmath  isi
    17. Arhangel'skii A., “On Power Homogeneous Spaces”, Topology Appl., 122:1-2 (2002), 15–33  crossref  mathscinet  zmath  isi
    18. Arhangel'skii A., “The Hewitt-Nachbin Completion in Topological Algebra. Some Effects of Homogeneity”, Appl. Categ. Struct., 10:3 (2002), 267–278  crossref  mathscinet  zmath  isi
    19. Arhangel'skii A., “Some Open Problems on Homogeneous Compacta”, Paul Erdos and His Mathematics II, Bolyai Society Mathematical Studies, 11, ed. Halasz G. Lovasz L. Simonovits M. Sos V., Springer-Verlag Berlin, 2002, 15–31  mathscinet  zmath  isi
    20. O. V. Sipacheva, “The topology of free topological groups”, J. Math. Sci., 131:4 (2005), 5765–5838  mathnet  crossref  mathscinet  zmath  elib  elib
    21. Van Mill J., “A Note on Ford's Example”, Topology Proceedings, Vol 28, No 2, 2004, Topology Proceedings (Monographic Series), 28, no. 2, eds. Dydak J., Gruenhage G., Heath J., Kennedy J., Minc P., Reed G., Shakhmatov D., Slaminka E., Tuncali , Auburn Univ, 2004, 689–694  mathscinet  zmath  isi
    22. Tkachenko M., Tkachuk V., “Dyadicity Index and Metrizability of Compact Continuous Images of Function Spaces”, Topology Appl., 149:1-3 (2005), 243–257  crossref  mathscinet  zmath  isi
    23. Van Mill J., “Strong Local Homogeneity and Coset Spaces”, Proc. Amer. Math. Soc., 133:8 (2005), 2243–2249  crossref  mathscinet  zmath  isi
    24. W.W. Comfort, Ivan S. Gotchev, Luis Recoder-Núñez, “M-embedded subspaces of certain product spaces”, Topology and its Applications, 155:17-18 (2008), 2188  crossref  mathscinet  zmath
    25. M. Sanchis, “Moscow spaces and selection theory”, Topology and its Applications, 155:8 (2008), 883  crossref  mathscinet  zmath
    26. van Mill J., “Homogeneous Spaces and Transitive Actions by Polish Groups”, Isr. J. Math., 165:1 (2008), 133–159  crossref  mathscinet  zmath  isi
    27. van Mill J., “On the G-Compactifications of the Rational Numbers”, Mon.heft. Math., 157:3 (2009), 257–266  crossref  mathscinet  zmath  isi
    28. K. L. Kozlov, V. A. Chatyrko, “Topological transformation groups and Dugundji compacta”, Sb. Math., 201:1 (2010), 103–128  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    29. Alexander V. Arhangel'skii, Mitrofan M. Choban, “Some addition theorems for rectifiable spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2, 60–69  mathnet  mathscinet  zmath
    30. Arhangel'skii A., van Mill J., “On Uniquely Homogeneous Spaces, I”, J. Math. Soc. Jpn., 64:3 (2012), 903–926  crossref  mathscinet  zmath  isi
    31. Arhangel'skii A., Choban M., Mihaylova E., “Openness, Homogeneity and Baire Property in the Remainders of Spaces”, C. R. Acad. Bulg. Sci., 65:12 (2012), 1623–1630  mathscinet  zmath  isi
    32. K. L. Kozlov, “Topology of actions and homogeneous spaces”, Sb. Math., 204:4 (2013), 588–620  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    33. Kozlov K.L., “Spectral Decompositions of Spaces Induced by Spectral Decompositions of Acting Groups”, Topology Appl., 160:11, SI (2013), 1188–1205  crossref  mathscinet  zmath  isi
    34. Banakh T. Valov V., “Dissertationes Mathematicae”, Diss. Math., 2013, no. 491, 1–120  mathscinet  isi
    35. Lin F., “Compactly Generated Rectifiable Spaces Or Paratopological Groups”, Math. Commun., 18:2 (2013), 417–427  mathscinet  zmath  isi
    36. Zhang J., Lin F., He W., “On Hereditarily Normal Rectifiable Spaces”, Filomat, 27:7 (2013), 1329–1331  crossref  mathscinet  zmath  isi
    37. Blagojevic P.V.M., Blagojevic A.D., Kocinac L.D.R., “On Diagonal Resolvable Spheres”, Topology Appl., 160:18, SI (2013), 2335–2339  crossref  mathscinet  zmath  isi
    38. Lin F., “Metrizability of Rectifiable Spaces”, Bull. Malays. Math. Sci. Soc., 36:4 (2013), 1099–1107  mathscinet  zmath  isi
    39. Lin F., “The Operators of Rotoids in Homogeneous Spaces Or Generalized Ordered Spaces”, Topology Appl., 161 (2014), 248–262  crossref  mathscinet  zmath  isi
    40. Iván Sánchez, M.G.. Tkachenko, “Products of bounded subsets of paratopological groups”, Topology and its Applications, 190 (2015), 42  crossref  mathscinet
    41. Arhangel'skii A.V., “A Dichotomy Theorem and other results for a class of quotients of topological groups”, Topology Appl., 215 (2017), 1–10  crossref  mathscinet  zmath  isi  scopus
    42. E. Martyanov, “Characterization of $\Bbb R$-factorizable $G$-spaces”, Moscow University Mathematics Bulletin, 72:2 (2017), 49–54  mathnet  crossref  mathscinet  isi
    43. Kozlov K.L., “R-Factorizable G-Spaces”, Topology Appl., 227 (2017), 146–164  crossref  mathscinet  zmath  isi  scopus
    44. T. F. Zhuraev, A. Kh. Rakhmatullaev, Z. O. Tursunova, “Some values subfunctors of functor probalities measures in the categories Comp”, Vestn. SamU. Estestvennonauchn. ser., 24:2 (2018), 28–32  mathnet  crossref  elib
    45. Sh. A. Ayupov, T. F. Zhuraev, “O proektivno induktivno zamknutykh podfunktorakh funktora $P$ veroyatnostnykh mer”, Materialy nauchnoi konferentsii «Problemy sovremennoi topologii i ee prilozheniya», 11–12 Maya 2017 g., Tashkent, Uzbekistan, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 144, VINITI RAN, M., 2018, 88–95  mathnet  mathscinet
    46. Whittington K., “The Sin Property in Homeomorphism Groups”, Topology Appl., 251 (2019), 94–106  crossref  mathscinet  zmath  isi  scopus
    47. van Mill J., Valov V.M., “Actions of Semitopological Groups”, Can. Math. Bul.-Bul. Can. Math., 62:2 (2019), 441–450  crossref  mathscinet  zmath  isi
    48. V. M. Valov, K. L. Kozlov, “Spectral representations of topological groups and near-openly generated groups”, Sb. Math., 211:2 (2020), 258–274  mathnet  crossref  crossref  isi  elib
    49. B. V. Sorin, “O silnykh formakh odnorodnosti topologicheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 3, 39–42  mathnet
    50. A. V. Arkhangelskii, “O svoistvakh topologicheskikh razbienii i ob otobrazheniyakh topologicheskikh grupp”, Trudy mezhdunarodnoi konferentsii Klassicheskaya i sovremennaya geometriya, posvyaschennoi 100-letiyu so dnya rozhdeniyaprofessora Vyacheslava Timofeevicha Bazyleva. Moskva, 2225 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 3–9  mathnet  crossref
  •   - 1989–1990 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:501
    Full text:192
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020