RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1988, Volume 135(177), Number 4, Pages 497–513 (Mi msb1720)  

This article is cited in 2 scientific papers (total in 2 papers)

On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness

M. V. Samokhin


Abstract: A characterization from the point of view of the maximum modulus principle is given for harmonic domains, that is, domains for which there is an affirmative answer to the question of the existence of an analytic function on the universal covering surface which is automorphic with respect to the covering group and whose boundary values have prescribed modulus. It is shown that harmonic domains are distinguished from other domains by the “sameness” of the maximum modulus principle for the classes of bounded harmonic and bounded analytic functions.
It is shown that the maximum modulus principle plays an important role in the study of a series of questions from the classical theory of cluster sets. In particular, it is noted that the assertions of some of the well-known theorems of the theory of cluster sets are equivalent to the corresponding maximum modulus principle being satisfied.
Bibliography: 16 titles.

Full text: PDF file (990 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1989, 63:2, 483–498

Bibliographic databases:

UDC: 517.53
MSC: 30C80, 30C85, 30D40, 30H05, 46J15
Received: 17.02.1987

Citation: M. V. Samokhin, “On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness”, Mat. Sb. (N.S.), 135(177):4 (1988), 497–513; Math. USSR-Sb., 63:2 (1989), 483–498

Citation in format AMSBIB
\Bibitem{Sam88}
\by M.~V.~Samokhin
\paper On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 135(177)
\issue 4
\pages 497--513
\mathnet{http://mi.mathnet.ru/msb1720}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=942135}
\zmath{https://zbmath.org/?q=an:0745.30035|0663.30028}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 2
\pages 483--498
\crossref{https://doi.org/10.1070/SM1989v063n02ABEH003286}


Linking options:
  • http://mi.mathnet.ru/eng/msb1720
  • http://mi.mathnet.ru/eng/msb/v177/i4/p497

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Samokhin, “Some classical problems in the theory of analytic functions in domains of Parreau–Widom type”, Math. USSR-Sb., 73:1 (1992), 273–288  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. M. V. Samokhin, “On the problem of existence of analytic functions with boundary values of given modulus”, Sb. Math., 187:1 (1996), 111–117  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:317
    Full text:68
    References:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020