RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1996, Volume 187, Number 12, Pages 3–20 (Mi msb176)  

This article is cited in 2 scientific papers (total in 2 papers)

Number of limit cycles of the quotient system of the $n$-dimensional Fuller problem

V. F. Borisov

State Academy of Consumer Services

Abstract: The number of limit cycles of the quotient system of the $n$-dimensional Fuller problem (that is, the number of one-parameter families of self-similar solutions of the equation $y^{(2n)}=(-1)^{n+1}\operatorname {sgn}y$) is proved to be equal to $[n/2]$.

DOI: https://doi.org/10.4213/sm176

Full text: PDF file (306 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1996, 187:12, 1737–1753

Bibliographic databases:

UDC: 517.977
MSC: Primary 49B10, 34C05; Secondary 93C15
Received: 29.11.1995

Citation: V. F. Borisov, “Number of limit cycles of the quotient system of the $n$-dimensional Fuller problem”, Mat. Sb., 187:12 (1996), 3–20; Sb. Math., 187:12 (1996), 1737–1753

Citation in format AMSBIB
\Bibitem{Bor96}
\by V.~F.~Borisov
\paper Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 12
\pages 3--20
\mathnet{http://mi.mathnet.ru/msb176}
\crossref{https://doi.org/10.4213/sm176}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1442209}
\zmath{https://zbmath.org/?q=an:0876.34032}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 12
\pages 1737--1753
\crossref{https://doi.org/10.1070/SM1996v187n12ABEH000176}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996WQ48500007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030299671}


Linking options:
  • http://mi.mathnet.ru/eng/msb176
  • https://doi.org/10.4213/sm176
  • http://mi.mathnet.ru/eng/msb/v187/i12/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Zelikin, L. F. Zelikina, “The structure of optimal synthesis in a neighbourhood of singular manifolds for problems that are affine in control”, Sb. Math., 189:10 (1998), 1467–1484  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. M. I. Zelikin, “The Structure of Optimal Synthesis in the Vicinity of Singular Manifolds for Problems Affine with Respect to Control”, Proc. Steklov Inst. Math., 236 (2002), 164–185  mathnet  mathscinet  zmath
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:211
    Full text:98
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020