RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1988, Volume 136(178), Number 4(8), Pages 561–573 (Mi msb1760)  

This article is cited in 4 scientific papers (total in 4 papers)

Application of generalized analytic functions on Riemann surfaces to the investigation of $G$-deformations of two-dimensional surfaces in $E^4$

V. T. Fomenko, I. A. Bikchantaev


Abstract: Deformations of two-dimensional surfaces in four-dimensional Euclidean space preserving their Grassmannian image ($G$-deformations) are investigated. The surfaces are assumed to belong to a certain subclass of the class of surfaces of negative Gaussian curvature. Conditions are obtained for the existence of $G$-deformations having constricted points and subject to a condition of generalized sliding; the number of linearly independent $G$-deformations satisfying these conditions is found. In obtaining these results, properties of generalized analytic functions on Riemann surfaces are used. In particular, formulas are established for defect numbers for the Hilbert boundary problem for generalized analytic functions on a compact Riemann surface with boundary.
Bibliography: 8 titles.

Full text: PDF file (826 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1989, 64:2, 557–569

Bibliographic databases:

UDC: 513.73
MSC: Primary 30G20, 30F99, 53A05; Secondary 30F30, 30E25, 35J55
Received: 08.12.1986

Citation: V. T. Fomenko, I. A. Bikchantaev, “Application of generalized analytic functions on Riemann surfaces to the investigation of $G$-deformations of two-dimensional surfaces in $E^4$”, Mat. Sb. (N.S.), 136(178):4(8) (1988), 561–573; Math. USSR-Sb., 64:2 (1989), 557–569

Citation in format AMSBIB
\Bibitem{FomBik88}
\by V.~T.~Fomenko, I.~A.~Bikchantaev
\paper Application of generalized analytic functions on Riemann surfaces to the investigation of $G$-deformations of two-dimensional surfaces in~$E^4$
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 136(178)
\issue 4(8)
\pages 561--573
\mathnet{http://mi.mathnet.ru/msb1760}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=965893}
\zmath{https://zbmath.org/?q=an:0678.53006|0654.53005}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 2
\pages 557--569
\crossref{https://doi.org/10.1070/SM1989v064n02ABEH003328}


Linking options:
  • http://mi.mathnet.ru/eng/msb1760
  • http://mi.mathnet.ru/eng/msb/v178/i4/p561

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Borisenko, Yu. A. Nikolaevskii, “Grassmann manifolds and the Grassmann image of submanifolds”, Russian Math. Surveys, 46:2 (1991), 45–94  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Bikchantaev I., “The Hilbert Problem for First-Order Linear Elliptic Systems on a Riemann Surface with Boundary”, Differ. Equ., 36:4 (2000), 559–566  mathnet  crossref  mathscinet  zmath  isi
    3. I. A. Bikchantaev, “The Hilbert problem for a first-order linear elliptic system with noncompactly supported coefficients on a Riemann surface with a boundary”, Russian Math. (Iz. VUZ), 50:1 (2006), 14–22  mathnet  mathscinet  zmath  elib
    4. D. A. Zhukov, “Beskonechno malye MG-deformatsii ovaloida”, Vladikavk. matem. zhurn., 15:2 (2013), 35–44  mathnet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:229
    Full text:59
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019