RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1986, Volume 129(171), Number 1, Pages 3–19 (Mi msb1803)  

This article is cited in 2 scientific papers (total in 2 papers)

Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type

N. L. Vasilevskii


Abstract: Let $\mathscr L$ be a union of finitely many smooth orientable bounded disjoint surfaces in $\mathbf R^n$ of various dimensions (between $1$ and $n-1$), and let $PC(\dot{\mathbf R}^n,\mathscr L)$ be the algebra of functions continuous on $\dot{\mathbf R}^n\setminus\operatorname{Int}\mathscr L$ ($\dot{\mathbf R}^n=\mathbf R^n\cup\{\infty\}$) and having discontinuities of homogeneous type on surfaces in $\mathscr L$. This article includes a description of the algebra of symbols for the algebra $\mathscr R$ generated by all the operators of the form $A=a(x)M$ acting in $L_2(\mathbf R^n)$, where $a(x)\in PC(\dot{\mathbf R}^n,\mathscr L)$ and $M=F^{-1}m(\xi)F$, with $F$ and $F^{-1}$ the direct and inverse Fourier transformations, respectively, and with $m(\xi)$ a homogeneous function on $\mathbf R^n$ of degree zero whose restriction to the unit sphere in $\mathbf R^n$ is continuous. A criterion for operators in $\mathscr R$ to be Noetherian operators is given.
Bibliography: 25 titles.

Full text: PDF file (1000 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1987, 57:1, 1–19

Bibliographic databases:

UDC: 517.983+517.986.3
MSC: Primary 45E99, 47G05, 47D25; Secondary 35S99, 46L05, 47A53
Received: 27.06.1984

Citation: N. L. Vasilevskii, “Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type”, Mat. Sb. (N.S.), 129(171):1 (1986), 3–19; Math. USSR-Sb., 57:1 (1987), 1–19

Citation in format AMSBIB
\Bibitem{Vas86}
\by N.~L.~Vasilevskii
\paper Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 129(171)
\issue 1
\pages 3--19
\mathnet{http://mi.mathnet.ru/msb1803}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=830092}
\zmath{https://zbmath.org/?q=an:0623.47064|0608.47053}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 57
\issue 1
\pages 1--19
\crossref{https://doi.org/10.1070/SM1987v057n01ABEH003052}


Linking options:
  • http://mi.mathnet.ru/eng/msb1803
  • http://mi.mathnet.ru/eng/msb/v171/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vasilev V., “Many-Dimensional Riemann Problem and Related Singular Internal Equations”, Differ. Equ., 31:3 (1995), 492–494  mathnet  mathscinet  isi
    2. Karapetyants A. Rabinovich V. Vasilevski N., “On Algebras of Two Dimensional Singular Integral Operators with Homogeneous Discontinuities in Symbols”, Integr. Equ. Oper. Theory, 40:3 (2001), 278–308  crossref  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:187
    Full text:62
    References:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019