RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1987, Volume 132(174), Number 3, Pages 420–433 (Mi msb1877)  

This article is cited in 7 scientific papers (total in 7 papers)

On homological dimension modulo $p$

A. N. Dranishnikov


Abstract: The article provides a construction of an infinite-dimensional compact space of dimension 2 modulo $p$ for any $p$. A characterization of compact spaces $n$-dimensional modulo $p$ in terms of inverse spectrum of polyhedra is given. It is proved that compact spaces $n$-dimensional modulo $p$, and only these spaces, are images of $n$-dimensional compact spaces under maps acyclic in the sense of cohomology with coefficients in $\mathbf Z_p$.
Bibliography: 18 titles.

Full text: PDF file (908 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1988, 60:2, 413–425

Bibliographic databases:

UDC: 515.1
MSC: 55M10
Received: 05.12.1985

Citation: A. N. Dranishnikov, “On homological dimension modulo $p$”, Mat. Sb. (N.S.), 132(174):3 (1987), 420–433; Math. USSR-Sb., 60:2 (1988), 413–425

Citation in format AMSBIB
\Bibitem{Dra87}
\by A.~N.~Dranishnikov
\paper On~homological dimension modulo~$p$
\jour Mat. Sb. (N.S.)
\yr 1987
\vol 132(174)
\issue 3
\pages 420--433
\mathnet{http://mi.mathnet.ru/msb1877}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=889602}
\zmath{https://zbmath.org/?q=an:0664.55001|0622.55002}
\transl
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 2
\pages 413--425
\crossref{https://doi.org/10.1070/SM1988v060n02ABEH003178}


Linking options:
  • http://mi.mathnet.ru/eng/msb1877
  • http://mi.mathnet.ru/eng/msb/v174/i3/p420

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Dranishnikov, E. V. Shchepin, “Cell-like maps. The problem of raising dimension”, Russian Math. Surveys, 41:6 (1986), 59–111  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. N. Dranishnikov, “Homological dimension theory”, Russian Math. Surveys, 43:4 (1988), 11–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Dydak J. Walsh J., “Complexes That Arise in Cohomological Dimension Theory - a Unified Approach”, J. Lond. Math. Soc.-Second Ser., 48:2 (1993), 329–347  crossref  mathscinet  zmath  isi
    4. Akira Koyama, Katsuya Yokoi, “Cohomological dimension and acyclic resolutions”, Topology and its Applications, 120:1-2 (2002), 175  crossref
    5. Levin M., “Acyclic Resolutions for Arbitrary Groups”, Isr. J. Math., 135 (2003), 193–203  crossref  mathscinet  zmath  isi
    6. Rubin L. Schapiro P., “Resolutions for Metrizable Compacta in Extension Theory”, Trans. Am. Math. Soc., 358:6 (2006), 2507–2536  crossref  mathscinet  zmath  isi
    7. Vera Tonić, “Bockstein basis and resolution theorems in extension theory”, Topology and its Applications, 157:3 (2010), 674  crossref
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:195
    Full text:70
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019