RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1985, Volume 127(169), Number 1(5), Pages 40–54 (Mi msb1956)  

This article is cited in 1 scientific paper (total in 1 paper)

Subspaces generated by the rows of circulants, and minimal irreducible linear groups

D. A. Suprunenko


Abstract: The author describes the soluble minimal irreducible subgroups of $GL(pq,K)$, where $p$ and $q$ are prime numbers, $p>q$, $q\nmid p-1$, and $K$ is an arbitrary subfield of the field of real numbers. He proves that up to conjugacy, there exist exactly 4 soluble minimal irreducible subgroups in $GL(pq,K)$: $G_1=D_1H_1$, $G_2=D_2H_1$, $G_3=D_3H_2$, and $G_4 = D_4H_3$, where each $D_i$ is a Sylow 2-subgroup of $G_i$ and $H_1$, $H_2$, and $H_3$ are minimal transitive groups of permutation matrices of degree $pq$, $G_1$ and $G_2$ are metabelian groups, each of which is generated by two matrices, and $G_3$ and $G_4$ are soluble groups of class 3 with three generators:
$$ |G_1|=2^{m_{pq}}pq, \quad |G_2|=2^{m_p+m_q}pq, \quad |G_3|=2^{qm_p}p^mq, \quad |G_4|=2^{pm_q}pq^l, $$
where $m_d$ is the order of the number 2 modul $d$, $m$ is the order of $p$ modulo $q$, and $l$ is the order of $q$ modulo $p$.
The properties of subspaces generated by the rows of circulants over a prime finite field are investigated. The connection between these properties and the problem of describing certain classes of minimal irreducible linear groups is indicated.
Bibliography: 18 titles.

Full text: PDF file (841 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1986, 55:1, 39–54

Bibliographic databases:

UDC: 512.5
MSC: Primary 20G20; Secondary 20F16
Received: 20.09.1983

Citation: D. A. Suprunenko, “Subspaces generated by the rows of circulants, and minimal irreducible linear groups”, Mat. Sb. (N.S.), 127(169):1(5) (1985), 40–54; Math. USSR-Sb., 55:1 (1986), 39–54

Citation in format AMSBIB
\Bibitem{Sup85}
\by D.~A.~Suprunenko
\paper Subspaces generated by the rows of circulants, and minimal irreducible linear groups
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 127(169)
\issue 1(5)
\pages 40--54
\mathnet{http://mi.mathnet.ru/msb1956}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=791316}
\zmath{https://zbmath.org/?q=an:0596.20040|0575.20043}
\transl
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 39--54
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH002990}


Linking options:
  • http://mi.mathnet.ru/eng/msb1956
  • http://mi.mathnet.ru/eng/msb/v169/i1/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Platonov V.P., “Minimal irreducible linear groups and representation of finite groups”, Dokl. Math., 79:1 (2009), 125–127  mathnet  crossref  mathscinet  isi  elib  elib
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:176
    Full text:46
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019