RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1986, Volume 131(173), Number 4(12), Pages 419–437 (Mi msb1971)  

This article is cited in 4 scientific papers (total in 4 papers)

On uniform quasiasymptotics of solutions of the second mixed problem for a hyperbolic equation

A. K. Gushchin, V. P. Mikhailov


Abstract: This paper is devoted to the study of uniform quasiasymptotics of the solution of the second mixed problem in $(0,+\infty)\times\Omega$, $\Omega\in\mathbf R_n$, and of the Cauchy problem $(\Omega=\mathbf R_n)$ for the linear hyperbolic equation
$$ u_{tt}-\sum_{i,j=1}^n(a_{ij}(x)u_{x_i})_{x_j}=f(t,x) $$
with initial conditions
$$ u|_{t=0}=\varphi(x),\qquad u_t|_{t=0}=\psi(x). $$
A criterion for the existence of quasiasymptotics of the solution of order $\alpha+2$ is established under the assumption that the function $F(t,x)=f(t,x)\theta(t)+\psi(x)\delta(t)+\varphi(x)\delta'(t)$ has quasiasymptotics of order $\alpha$ and with a certain condition of “isoperimetric type” on the class of domains $\Omega$ considered.
Bibliography: 13 titles.

Full text: PDF file (893 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1988, 59:2, 409–427

Bibliographic databases:

UDC: 517.9
MSC: 35L15, 35L20, 35B40
Received: 21.04.1986

Citation: A. K. Gushchin, V. P. Mikhailov, “On uniform quasiasymptotics of solutions of the second mixed problem for a hyperbolic equation”, Mat. Sb. (N.S.), 131(173):4(12) (1986), 419–437; Math. USSR-Sb., 59:2 (1988), 409–427

Citation in format AMSBIB
\Bibitem{GusMik86}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On uniform quasiasymptotics of solutions of the second mixed problem for a~hyperbolic equation
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 131(173)
\issue 4(12)
\pages 419--437
\mathnet{http://mi.mathnet.ru/msb1971}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=881906}
\zmath{https://zbmath.org/?q=an:0635.35056}
\transl
\jour Math. USSR-Sb.
\yr 1988
\vol 59
\issue 2
\pages 409--427
\crossref{https://doi.org/10.1070/SM1988v059n02ABEH003144}


Linking options:
  • http://mi.mathnet.ru/eng/msb1971
  • http://mi.mathnet.ru/eng/msb/v173/i4/p419

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Gushchin, V. P. Mikhailov, “Comparison theorems for solutions of hyperbolic equations”, Math. USSR-Sb., 62:2 (1989), 349–371  mathnet  crossref  mathscinet  zmath
    2. V. I. Gorbachuk, A. V. Knyazyuk, “Boundary values of solutions of operator-differential equations”, Russian Math. Surveys, 44:3 (1989), 67–111  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. V. Zh. Dumanyan, “On the uniform quasiasymptotics of the solutions of hyperbolic equations”, Math. USSR-Sb., 70:1 (1991), 109–128  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Denisov V., “On the Stabilization of Mean-Values of Solutions of Cauchy-Problem for 2nd-Order Parabolic Equations”, 315, no. 4, 1990, 777–780  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:297
    Full text:78
    References:50
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020