|
This article is cited in 13 scientific papers (total in 13 papers)
Approximation by dyadic wavelets
V. Yu. Protasov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Systems of dyadic wavelets on the positive half-line $\mathbb R_+$
equipped with the operation of binary summation are studied.
Several problems concerning approximation properties of
such wavelets are solved. In particular, explicit formulae
for the order of approximation of smooth functions and of binary-smooth
functions on $\mathbb R_+$ (smooth in the dyadic metric on the
binary half-line) are obtained. The dyadic approximations with
best approximation properties are characterized. The relation
between the smoothness of wavelets and their order of approximation is
analysed in various function spaces.
Bibliography: 24 titles.
DOI:
https://doi.org/10.4213/sm1981
Full text:
PDF file (591 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2007, 198:11, 1665–1681
Bibliographic databases:
UDC:
517.518.3+517.518.543+517.965
MSC: 42C40, 41A30 Received: 06.07.2006 and 05.06.2007
Citation:
V. Yu. Protasov, “Approximation by dyadic wavelets”, Mat. Sb., 198:11 (2007), 135–152; Sb. Math., 198:11 (2007), 1665–1681
Citation in format AMSBIB
\Bibitem{Pro07}
\by V.~Yu.~Protasov
\paper Approximation by dyadic wavelets
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 11
\pages 135--152
\mathnet{http://mi.mathnet.ru/msb1981}
\crossref{https://doi.org/10.4213/sm1981}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2374387}
\zmath{https://zbmath.org/?q=an:05272617}
\elib{https://elibrary.ru/item.asp?id=9578646}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 11
\pages 1665--1681
\crossref{https://doi.org/10.1070/SM2007v198n11ABEH003900}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000253636300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749139859}
Linking options:
http://mi.mathnet.ru/eng/msb1981https://doi.org/10.4213/sm1981 http://mi.mathnet.ru/eng/msb/v198/i11/p135
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691
-
S. F. Lukomskii, “Neortogonalnyi kratnomasshtabnyi analiz na nul-mernykh lokalno kompaktnykh gruppakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3(1) (2011), 25–32
-
Lukomskii S.F., “Multiresolution analysis on product of zero-dimensional Abelian groups”, J. Math. Anal. Appl., 385:2 (2012), 1162–1178
-
Yu. A. Farkov, “Wavelet Expansions on the Cantor Group”, Math. Notes, 96:6 (2014), 996–1007
-
Lukomskii S.F., “Riesz Multiresolution Analysis on Vilenkin Groups”, Dokl. Math., 90:1 (2014), 412–415
-
S. F. Lukomskii, “Riesz multiresolution analysis on zero-dimensional groups”, Izv. Math., 79:1 (2015), 145–176
-
S. F. Lukomskii, G. S. Berdnikov, Yu. S. Kruss, “On the Orthogonality of a System of Shifts of the Scaling Function on Vilenkin Groups”, Math. Notes, 98:2 (2015), 339–342
-
Yu. S. Kruss, “O tochnosti otsenki chisla shagov algoritma postroeniya masshtabiruyuschei funktsii na lokalnykh polyakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 279–287
-
G. S. Berdnikov, “Grafy s konturami v kratnomasshtabnom analize na gruppakh Vilenkina”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 377–388
-
Berdnikov G.S., Kruss I.S., Lukomskii S.F., “on Orthogonal Systems of Shifts of Scaling Function on Local Fields of Positive Characteristic”, Turk. J. Math., 41:2 (2017), 244–253
-
Berdnikov G., Kruss I., Lukomskii S., “How to Construct Wavelets on Local Fields of Positive Characteristic”, Lobachevskii J. Math., 38:4, SI (2017), 615–621
-
Siddiqi A.H., Manchanda P., “Sampling and Approximation Theorems For Wavelets and Frames on Vilenkin Group”, 2017 International Conference on Sampling Theory and Applications (Sampta), IEEE, 2017, 614–616
-
G. S. Berdnikov, “Necessary and sufficient condition for an orthogonal scaling function on Vilenkin groups”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 19:1 (2019), 24–33
|
Number of views: |
This page: | 489 | Full text: | 175 | References: | 40 | First page: | 11 |
|