RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1984, Volume 123(165), Number 2, Pages 174–194 (Mi msb1992)  

This article is cited in 9 scientific papers (total in 9 papers)

Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties

V. G. Zhuravlev


Abstract: Using the method of A. N. Andrianov, we establish a connection between the Fourier coefficients of Siegel modular forms $F$ of half-integral weight and the eigenvalues of operators in the local Hecke rings $\mathbf L_p^n(\varkappa)$ for the symplectic covering group $\mathrm{GSp}_n^+(\mathbf R)$ of degree $n$. These results are used for analytic continuation of the standard zeta-functions associated to $F$.
Bibliography: 10 titles.

Full text: PDF file (999 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1985, 51:1, 169–190

Bibliographic databases:

UDC: 511
MSC: Primary 10D20, 10D24; Secondary 10H10, 12A70, 32N05
Received: 10.06.1983

Citation: V. G. Zhuravlev, “Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties”, Mat. Sb. (N.S.), 123(165):2 (1984), 174–194; Math. USSR-Sb., 51:1 (1985), 169–190

Citation in format AMSBIB
\Bibitem{Zhu84}
\by V.~G.~Zhuravlev
\paper Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 123(165)
\issue 2
\pages 174--194
\mathnet{http://mi.mathnet.ru/msb1992}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=732384}
\zmath{https://zbmath.org/?q=an:0571.10029|0537.10017}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 169--190
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002853}


Linking options:
  • http://mi.mathnet.ru/eng/msb1992
  • http://mi.mathnet.ru/eng/msb/v165/i2/p174

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Zhuravlev, “Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms”, Math. USSR-Sb., 58:2 (1987), 417–434  mathnet  crossref  mathscinet  zmath
    2. A. N. Andrianov, “The action of Hecke operators on nonhomogeneous theta series”, Math. USSR-Sb., 59:2 (1988), 269–285  mathnet  crossref  mathscinet  zmath
    3. Bump D. Furusawa M. Ginzburg D., “Non-Unique Models in the Rankin-Selberg Method”, J. Reine Angew. Math., 468 (1995), 77–111  mathscinet  zmath  isi
    4. Hayashida S., “Zeta Function and Zharkovskaya's Theorem on Siegel Modular Forms of Half-Integral Weight”, Acta Arith., 108:4 (2003), 391–399  crossref  mathscinet  zmath  adsnasa  isi
    5. Hayashida S., “Skew-Holomorphic Jacobi Forms of Index 1 and Siegel Modular Forms of Half-Integral Weight”, J. Number Theory, 106:2 (2004), 200–218  crossref  mathscinet  zmath  isi
    6. Hayashida S. Ibukiyama T., “Siegel Modular Forms of Half Integral Weight and a Lifting Conjecture”, J. Math. Kyoto Univ., 45:3 (2005), 489–530  mathscinet  zmath  isi
    7. Ibukiyama T., “Siegel Modular Forms of Weight Three and Conjectural Correspondence of Shimura Type and Langlands Type”, Conference on l-Functions, eds. Weng L., Kaneko M., World Scientific Publ Co Pte Ltd, 2007, 55–69  mathscinet  zmath  isi
    8. Lynne H. Walling, “A formula for the action of Hecke operators on half-integral weight Siegel modular forms and applications”, Journal of Number Theory, 133:5 (2013), 1608  crossref
    9. Hidenori Katsurada, Hisa-aki Kawamura, “Ikeda's conjecture on the period of the Duke–Imamoḡlu–Ikeda lift”, Proc. London Math. Soc, 2015, pdv011  crossref
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:142
    Full text:46
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019