RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1984, Volume 123(165), Number 2, Pages 276–286 (Mi msb2005)  

This article is cited in 3 scientific papers (total in 3 papers)

The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$

T. A. Pevtsova


Abstract: The following theorem is proved.
Theorem. Let $G$ be the semidirect sum of a simple Lie algebra $H$ and an Abelian algebra relative to representation $\mu$. Then a complete involutive system of rational functions on $G^*$ is explicitly constructed in the following cases: a) {\it$H=\operatorname{gl}(2n)$ and $\mu=\Lambda^2\rho$;} b) {\it$H=\operatorname{sl}(2n)$ and $\mu=s^2\rho$;} c) {\it$H=\operatorname{sp}(2n)$ and $\mu=\rho+\tau$, where $\rho$ is the minimal representation and $\tau$ is the one-dimensional trivial representation.}
Bibliography: 9 titles.

Full text: PDF file (458 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1985, 51:1, 275–286

Bibliographic databases:

UDC: 512.66
MSC: Primary 17B15, 58F05; Secondary 22E30
Received: 14.11.1981 and 08.09.1983

Citation: T. A. Pevtsova, “The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$”, Mat. Sb. (N.S.), 123(165):2 (1984), 276–286; Math. USSR-Sb., 51:1 (1985), 275–286

Citation in format AMSBIB
\Bibitem{Pev84}
\by T.~A.~Pevtsova
\paper The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 123(165)
\issue 2
\pages 276--286
\mathnet{http://mi.mathnet.ru/msb2005}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=732391}
\zmath{https://zbmath.org/?q=an:0538.58013|0569.58011}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 275--286
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002860}


Linking options:
  • http://mi.mathnet.ru/eng/msb2005
  • http://mi.mathnet.ru/eng/msb/v165/i2/p276

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Bolsinov, “Involutory families of functions on dual spaces of Lie algebras of type $G\underset\varphi+ V$”, Russian Math. Surveys, 42:6 (1987), 227–228  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. M. M. Zhdanova, “Completely integrable Hamiltonian systems on semidirect sums of Lie algebras”, Sb. Math., 200:5 (2009), 629–659  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:211
    Full text:51
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019