|
This article is cited in 9 scientific papers (total in 9 papers)
Systems of Wiener–Hopf integral equations, and nonlinear factorization equations
N. B. Engibaryan, L. G. Arabadzhyan
Abstract:
Systems of Wiener–Hopf integral equations
\begin{equation}
f(x)=g(x)+\int_0^\infty T(x-t)f(t) dt
\end{equation}
and corresponding nonlinear factorization equations
\begin{align}
U(x)&=T(x)+\int_0^\infty V(t)U(x+t) dt,
\nonumber
V(x)&=T(-x)+\int_0^\infty V(x+t)U(t) dt,\qquad x>0,
\end{align}
are studied. It is assumed that $T$ is a matrix-valued function with nonnegative components from $L_1(-\infty,\infty)$, with $\mu=r(A)\leqslant1$, where
$\displaystyle A=\int_{-\infty}^\infty T(x) dx$, and $r(A)$ is the spectral radius of the matrix $A$.
The conservative case $\mu=1$, to which major attention is given, falls outside the general theory of Wiener–Hopf integral equations, since the symbol of equation (1) degenerates.
A number of results have been obtained about the properties of the solution of the factorization equation (2), and about the existence, asymptotics and other properties of the solution of the homogeneous and nonhomogeneous conservative equation (1).
Bibliography: 21 titles.
Full text:
PDF file (1279 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Sbornik, 1985, 52:1, 181–208
Bibliographic databases:
UDC:
517.9
MSC: 45F15, 45E10 Received: 19.04.1982
Citation:
N. B. Engibaryan, L. G. Arabadzhyan, “Systems of Wiener–Hopf integral equations, and nonlinear factorization equations”, Mat. Sb. (N.S.), 124(166):2(6) (1984), 189–216; Math. USSR-Sb., 52:1 (1985), 181–208
Citation in format AMSBIB
\Bibitem{EngAra84}
\by N.~B.~Engibaryan, L.~G.~Arabadzhyan
\paper Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 124(166)
\issue 2(6)
\pages 189--216
\mathnet{http://mi.mathnet.ru/msb2047}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=746067}
\zmath{https://zbmath.org/?q=an:0582.45017|0566.45007}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 181--208
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002884}
Linking options:
http://mi.mathnet.ru/eng/msb2047 http://mi.mathnet.ru/eng/msb/v166/i2/p189
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Engibaryan N. Arabadzhyan L., “Some Factorization Problems for Convolution Integral-Operators”, Differ. Equ., 26:8 (1990), 1069–1078
-
N. B. Engibaryan, “Renewal theorems for a system of integral equations”, Sb. Math., 189:12 (1998), 1795–1808
-
N. B. Engibaryan, “Conservative systems of integral convolution equations
on the half-line and the entire line”, Sb. Math., 193:6 (2002), 847–867
-
Elias Wegert, Lothar von Wolfersdorf, “A solution method for the linear Chandrasekhar equation”, Math Meth Appl Sci, 29:15 (2006), 1767
-
Khachatryan, KA, “Solvability of Vector Integro-Differential Equations of Convolution Type on the Semiaxis”, Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences, 43:5 (2008), 305
-
Ts. È. Terdzhyan, A. Kh. Khachatryan, “About one system of integral equations in kinetic theory”, Comput. Math. Math. Phys., 49:4 (2009), 691–697
-
Khachatryan Kh.A., “On Some Systems of Nonlinear Integral Hammerstein-Type Equations on the Semiaxis”, Ukr. Math. J., 62:4 (2010), 630–647
-
N. B. Engibaryan, “On the factorization of matrix and operator Wiener–Hopf integral equations”, Izv. Math., 82:2 (2018), 273–282
-
Khachatryan Kh.A. Terdzhyan Ts.E. Sardanyan T.G., “On the Solvability of One System of Nonlinear Hammerstein-Type Integral Equations on the Semiaxis”, Ukr. Math. J., 69:8 (2018), 1287–1305
|
Number of views: |
This page: | 574 | Full text: | 125 | References: | 60 | First page: | 1 |
|