RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1984, Volume 125(167), Number 1(9), Pages 70–87 (Mi msb2072)  

This article is cited in 10 scientific papers (total in 10 papers)

Approximation characterization of classes of functions on continua of the complex plane

V. V. Andrievskii


Abstract: One possible method is suggested for the constructive description of function classes defined on continua of the complex plane for which the traditional (in this subject area) description in terms of distances from boundary points to corresponding level curves of the outer Riemann function generally does not exist.
The main idea of the constructions and results presented consists in taking account of the growth of derivatives of polynomials approximating the function.
Bibliography: 28 titles.

Full text: PDF file (930 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1986, 53:1, 69–87

Bibliographic databases:

UDC: 517.53
MSC: 30E10
Received: 17.10.1983

Citation: V. V. Andrievskii, “Approximation characterization of classes of functions on continua of the complex plane”, Mat. Sb. (N.S.), 125(167):1(9) (1984), 70–87; Math. USSR-Sb., 53:1 (1986), 69–87

Citation in format AMSBIB
\Bibitem{And84}
\by V.~V.~Andrievskii
\paper Approximation characterization of classes of functions on continua of the complex plane
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 125(167)
\issue 1(9)
\pages 70--87
\mathnet{http://mi.mathnet.ru/msb2072}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=760414}
\zmath{https://zbmath.org/?q=an:0606.30036}
\transl
\jour Math. USSR-Sb.
\yr 1986
\vol 53
\issue 1
\pages 69--87
\crossref{https://doi.org/10.1070/SM1986v053n01ABEH002910}


Linking options:
  • http://mi.mathnet.ru/eng/msb2072
  • http://mi.mathnet.ru/eng/msb/v167/i1/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Andrievskii, “On approximation of functions by harmonic polynomials”, Math. USSR-Izv., 30:1 (1988), 1–13  mathnet  crossref  mathscinet  zmath
    2. V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul, “Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary”, Math. USSR-Sb., 68:2 (1991), 303–323  mathnet  crossref  mathscinet  zmath  isi
    3. V. V. Andrievskii, V. V. Maimeskul, “Constructive description of certain classes of functions on quasismooth arcs”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 193–206  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Leonhard Frerick, Jürgen Müller, “Polynomial Approximation on Compact Sets Bounded by Dini-Smooth Arcs”, Comput. Methods Funct. Theory, 3:1 (2004), 273  crossref
    5. Vladimir V. Andrievskii, Hans-Peter Blatt, “Polynomial Approximation of Functions on a Quasi-Smooth Arc with Hermitian Interpolation”, Constr Approx, 2009  crossref  isi
    6. Jafarov S.Z., “Approximation of Functions by Rational Functions on Closed Curves of the Complex Plane”, Arab. J. Sci. Eng., 36:8 (2011), 1529–1534  crossref  mathscinet  isi
    7. Vladimir Andrievskii, “Approximation of Functions by Reciprocals of Polynomials on a Quasi-Smooth Arc”, SIAM J. Math. Anal, 44:4 (2012), 2329  crossref
    8. Jafarov S.Z., “Approximation of Conjugate Functions by Trigonometric Polynomials in Weighted Orlicz Spaces”, J. Math. Inequal., 7:2 (2013), 271–281  crossref  isi
    9. Vladimir Andrievskii, “Polynomial approximation of polyharmonic functions on a complement of a John Domain”, Journal of Approximation Theory, 2014  crossref
    10. T. A. Alexeeva, N. A. Shirokov, “Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$”, Probl. anal. Issues Anal., 8(26):3 (2019), 16–23  mathnet  crossref
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:392
    Full text:102
    References:67

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020