RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1985, Volume 128(170), Number 2(10), Pages 269–286 (Mi msb2127)  

This article is cited in 5 scientific papers (total in 5 papers)

A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere

R. D. Getsadze


Abstract: It is proved that there exists a continuous function defined on $[0,1]k^2$ whose double Fourier–Walsh–Paley series diverges almost everywhere in the sense of Pringsheim.
Bibliography: 9 titles

Full text: PDF file (692 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1987, 56:1, 262–278

Bibliographic databases:

UDC: 517.51
MSC: 42C10, 42B05
Received: 19.06.1984

Citation: R. D. Getsadze, “A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere”, Mat. Sb. (N.S.), 128(170):2(10) (1985), 269–286; Math. USSR-Sb., 56:1 (1987), 262–278

Citation in format AMSBIB
\Bibitem{Get85}
\by R.~D.~Getsadze
\paper A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 128(170)
\issue 2(10)
\pages 269--286
\mathnet{http://mi.mathnet.ru/msb2127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=809489}
\zmath{https://zbmath.org/?q=an:0606.42026}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 1
\pages 262--278
\crossref{https://doi.org/10.1070/SM1987v056n01ABEH003035}


Linking options:
  • http://mi.mathnet.ru/eng/msb2127
  • http://mi.mathnet.ru/eng/msb/v170/i2/p269

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. K. Bloshanskaya, I. L. Bloshanskii, “Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$”, Sb. Math., 186:2 (1995), 181–196  mathnet  crossref  mathscinet  zmath  isi
    2. S. K. Bloshanskaya, I. L. Bloshanskii, T. Yu. Roslova, “Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$”, Sb. Math., 189:5 (1998), 657–682  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Bloshanskaya S.K., Bloshanskii I.L., “Local smoothness conditions on a function which guarantee convergence of double Walsh-Fourier series of this function”, Wavelet Analysis and Applications, Applied and Numerical Harmonic Analysis, 2007, 3–11  isi
    4. S. K. Bloshanskaya, I. L. Bloshanskii, “A weak generalized localization criterion for multiple Walsh–Fourier series with $J_k$-lacunary sequence of rectangular partial sums”, Proc. Steklov Inst. Math., 285 (2014), 34–55  mathnet  crossref  crossref  isi  elib  elib
    5. G. A. Karagulyan, K. R. Muradyan, “On the divergence of Walsh and Haar series by sectorial and triangular regions”, Uch. zapiski EGU, ser. Fizika i Matematika, 2014, no. 2, 3–12  mathnet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:321
    Full text:191
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020