|
This article is cited in 59 scientific papers (total in 60 papers)
Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
S. N. Kruzhkov, A. V. Faminskii
Abstract:
In this paper the Cauchy problem for the Korteweg–de Vries equation $u_t+u_{xxx}=uu_x$, $x\in\mathbf R^1$, $0<t<T$, with initial condition $u(0,x)=u_0(x)$ is considered in nonlocal formulation. In the case of an arbitrary initial function $u_0(x)\in L^2(\mathbf R^1)$ the existence of a generalized $L^2$-solution is proved, and its smoothness is studied for $t>0$. A class of well-posed solutions is distinguished among the generalized solutions under consideration, and within this class theorems concerning existence, uniqueness and continuous dependence of solutions on initial conditions are proved.
Bibliography: 28 titles.
Full text:
PDF file (1284 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Sbornik, 1984, 48:2, 391–421
Bibliographic databases:
UDC:
517.946
MSC: 35Q20, 35D05 Received: 27.05.1982
Citation:
S. N. Kruzhkov, A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation”, Mat. Sb. (N.S.), 120(162):3 (1983), 396–425; Math. USSR-Sb., 48:2 (1984), 391–421
Citation in format AMSBIB
\Bibitem{KruFam83}
\by S.~N.~Kruzhkov, A.~V.~Faminskii
\paper Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 120(162)
\issue 3
\pages 396--425
\mathnet{http://mi.mathnet.ru/msb2138}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=691986}
\zmath{https://zbmath.org/?q=an:0549.35104|0537.35068}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 391--421
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002682}
Linking options:
http://mi.mathnet.ru/eng/msb2138 http://mi.mathnet.ru/eng/msb/v162/i3/p396
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Kruzhkov S., Faminskii A., “Continuity Properties of Solutions of Some Classes of Time-Dependent Equations”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1983, no. 3, 29–36
-
Amy Cohen, Thomas Kappeler, “Solutions to the Korteweg–de Vries Equation with Initial Profile in $L_1^1 (\mathbb{R}) \cap L_N^1 (\mathbb{R}^ + )$”, SIAM J Math Anal, 18:4 (1987), 991
-
Yoshio Tsutsumi, “The Cauchy Problem for the Korteweg–De Vries Equation with Measures as Initial Data”, SIAM J Math Anal, 20:3 (1989), 582
-
J. Ginibre, Y. Tsutsumi, “Uniqueness of Solutions for the Generalized Korteweg–de Vries Equation”, SIAM J Math Anal, 20:6 (1989), 1388
-
A. V. Faminskii, “The Cauchy problem for odd-order quasilinear equations”, Math. USSR-Sb., 68:1 (1991), 31–59
-
J. Ginibre, Y. Tsutsumi, G. Velo, “Existence and uniqueness of solutions for the generalized Korteweg de Vries equation”, Math Z, 203:1 (1990), 9
-
Walter Craig, Jonathan Goodman, “Linear dispersive equations of Airy type”, Journal of Differential Equations, 87:1 (1990), 38
-
Gustavo Ponce, Luis Vega, “Nonlinear small data scattering for the generalized Korteweg-de Vries equation”, Journal of Functional Analysis, 90:2 (1990), 445
-
Zhidkov P., “Cauchy-Problem for the Ordinary Korteweg-Devries Differential-Equation with Periodic Initial Data”, Differ. Equ., 26:5 (1990), 591–596
-
J Ginibre, G Velo, “Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation”, Journal of Differential Equations, 93:1 (1991), 150
-
J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations”, GAFA Geom funct anal, 3:3 (1993), 209
-
J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations”, GAFA Geom funct anal, 3:2 (1993), 107
-
Carlos E. Kenig, Gustavo Ponce, Luis Vega, “Well-posedness and scattering results for the generalized korteweg-de vries equation via the contraction principle”, Comm Pure Appl Math, 46:4 (1993), 527
-
Walter Craig, Thomas Kappeler, Walter Strauss, “Microlocal dispersive smoothing for the Schrödinger equation”, Comm Pure Appl Math, 48:8 (1995), 769
-
Bing-Yu Zhang, “Analyticity of Solutions of the Generalized Korteweg–de Vries Equation with Respect to Their Initial Values”, SIAM J Math Anal, 26:6 (1995), 1488
-
Naumkin P., Shishmarev I., “On Asymptotic-Behavior of Solutions of Generalized Korteweg de Vries Equation as T-]Infinity”, Dokl. Akad. Nauk, 344:2 (1995), 165–167
-
Faminskii A., “The Cauchy Problem for the Zakharov-Kuznetsov Equation”, Differ. Equ., 31:6 (1995), 1002–1012
-
P. I. Naumkin, I. A. Shishmarev, “Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation”, Sb. Math., 187:5 (1996), 693–733
-
P. E. Zhidkov, “Invariant measures generated by higher conservation laws for the Korteweg–de Vries equations”, Sb. Math., 187:6 (1996), 803–822
-
Zhou Xin, “Strong regularizing effect of integrable systems”, Communications in Partial Differential Equations, 22:3-4 (1997), 503
-
Hongsheng Cai, “Dispersive Smoothing Effects for KdV Type Equations”, Journal of Differential Equations, 136:2 (1997), 191
-
N. S. Bakhvalov, M. I. Zelikin, A. S. Kalashnikov, V. L. Kamynin, O. A. Oleinik, E. Yu. Panov, N. S. Petrosyan, V. M. Tikhomirov, A. V. Faminskii, V. N. Chubarikov, “Stanislav Nikolaevich Kruzhkov (obituary)”, Russian Math. Surveys, 53:5 (1998), 1071–1078
-
Hayashi, N, “Large time asymptotics of solutions to the generalized Korteweg-de Vries equation”, Journal of Functional Analysis, 159:1 (1998), 110
-
A. V. Faminskii, “Mixed problems for the Korteweg–de Vries equation”, Sb. Math., 190:6 (1999), 903–935
-
Hayashi, N, “Large time behavior of solutions for the modified Korteweg-de Vries equation”, International Mathematics Research Notices, 1999, no. 8, 395
-
German Fonsecal, Felipe Linares, Gustavo Ponce, “Global well-posedness for the modified korteweg-de vries equation”, Communications in Partial Differential Equations, 24:3-4 (1999), 683
-
Jacques Printems, “The Stochastic Korteweg–de Vries Equation inL2()”, Journal of Differential Equations, 153:2 (1999), 338
-
Hayashi N., Naumkin P., “On the modified Korteweg de Vries equation”, International Seminar Day on Diffraction, Proceedings, 1999, 146–156
-
Zhidkov, P, “Korteweg-de Vries and nonlinear Schroginger equations: Qualitative theory”, Korteweg-de Vries and Nonlinear Schroginger Equations: Qualitative Theory, 1756 (2001), 1
-
Hayashi N., Naumkin P., “On the Modified Korteweg-de Vries Equation”, Math. Phys. Anal. Geom., 4:3 (2001), 197–227
-
Maslov V., “Mathematical Aspects of Integral Optics”, Russ. J. Math. Phys., 8:2 (2001), 180–238
-
Takaoka H., Tzvetkov N., “On the Local Regularity of the Kadomtsev-Petviashvili-II Equation”, Int. Math. Res. Notices, 2001, no. 2, 77–114
-
Maslov V., “Mathematical Aspects of Integral Optics”, Russ. J. Math. Phys., 8:1 (2001), 83–105
-
Faminskii, AV, “Initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional-order Sobolev spaces”, Communications in Partial Differential Equations, 29:11–12 (2004), 1653
-
C.E.. Kenig, Gustavo Ponce, Luis Vega, “The Cauchy problem for quasi-linear Schr�dinger equations”, Invent. math, 158:2 (2004), 343
-
Ademir Fernando Pazoto, “Unique continuation and decay for the Korteweg-de Vries equation with localized damping”, ESAIM: COCV, 11:3 (2005), 473
-
Kappeler T., Perry P., Shubin M., Topalov P., “The Miura Map on the Line”, Int. Math. Res. Notices, 2005, no. 50, 3091–3133
-
Liana L. Dawson, “Uniqueness properties of higher order dispersive equations”, Journal of Differential Equations, 236:1 (2007), 199
-
L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega, “On uniqueness properties of solutions of the k-generalized KdV equations”, Journal of Functional Analysis, 244:2 (2007), 504
-
Chengchun Hao, Ling Hsiao, Baoxiang Wang, “Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces”, Journal of Mathematical Analysis and Applications, 328:1 (2007), 58
-
Bona, JL, “Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane”, Annales de l Institut Henri Poincare-Analyse Non Lineaire, 25:6 (2008), 1145
-
J LEVANDOSKY, M SEPULVEDA, O VERAVILLAGRAN, “Gain of regularity for the KP-I equation☆”, Journal of Differential Equations, 245:3 (2008), 762
-
J. A. Barceló, J.M. Bennett, A. Ruiz, M. C. Vilela, “Local smoothing for Kato potentials in three dimensions”, Math Nachr, 282:10 (2009), 1391
-
Margareth Alves, Mauricio Sepúlveda, Octavio Vera, “Smoothing properties for the higher-order nonlinear Schrödinger equation with constant coefficients”, Nonlinear Analysis: Theory, Methods & Applications, 71:3-4 (2009), 948
-
F. Linares, A.F. Pazoto, “Asymptotic behavior of the Korteweg–de Vries equation posed in a quarter plane”, Journal of Differential Equations, 246:4 (2009), 1342
-
Fokas A.S., “Lax pairs: a Novel Type of Separability”, Inverse Probl., 25:12 (2009), 123007
-
S. I. Pokhozhaev, “On the Singular Solutions of the Korteweg–de Vries Equation”, Math. Notes, 88:5 (2010), 741–747
-
Pohozaev S.I., “On a Class of Singular Solutions to the Korteweg-de Vries Equation”, Dokl. Math., 82:3 (2010), 936–938
-
Nikolai A. Larkin, Eduardo Tronco, “Regular solutions of the 2D Zakharov–Kuznetsov equation on a half-strip”, Journal of Differential Equations, 2012
-
Audiard C., “Dispersive Smoothing for the Euler-Korteweg Model”, SIAM J. Math. Anal., 44:4 (2012), 3018–3040
-
A. V. Faminskii, M. A. Opritova, “On the initial-value problem for the Kawahara equation”, Journal of Mathematical Sciences, 201:5 (2014), 614–633
-
Akhunov T., “Local Well-Posedness of Quasi-Linear Systems Generalizing KdV”, Commun. Pure Appl. Anal, 12:2 (2013), 899–921
-
N.A.. Larkin, “Exponential decay of the -norm for the 2D Zakharov-Kuznetsov equation on a half-strip”, Journal of Mathematical Analysis and Applications, 2013
-
Pedro Isaza, Felipe Linares, Gustavo Ponce, “On Decay Properties of Solutions of the k-Generalized KdV Equation”, Commun. Math. Phys, 2013
-
Bing-Yu Zhang, Xiangqing Zhao, “Boundary smoothing properties of the Kawahara equation posed on the finite domain”, Journal of Mathematical Analysis and Applications, 2014
-
Pedro Isaza, Felipe Linares, Gustavo Ponce, “On the Propagation of Regularity and Decay of Solutions to thek-Generalized Korteweg-de Vries Equation”, Communications in Partial Differential Equations, 2014, 1412030655
-
A. P. Antonova, A. V. Faminskii, “On the Regularity of Solutions of the Cauchy Problem for the Zakharov–Kuznetsov Equation in Hölder Norms”, Math. Notes, 97:1 (2015), 12–20
-
G. G. Doronin, N. A. Larkin, “Stabilization of Regular Solutions for the Zakharov–Kuznetsov Equation posed on Bounded Rectangles and on a Strip”, Proceedings of the Edinburgh Mathematical Society, 2015, 1
-
A. R. Khashimov, “Vtoraya kraevaya zadacha dlya nestatsionarnogo uravneniya tretego poryadka sostavnogo tipa”, Matematicheskie zametki SVFU, 24:4 (2017), 76–86
-
A. V. Faminskii, “O vnutrennei regulyarnosti reshenii dvumernogo uravneniya Zakharova–Kuznetsova”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, no. 3, Rossiiskii universitet druzhby narodov, M., 2019, 513–546
|
Number of views: |
This page: | 1376 | Full text: | 335 | References: | 57 |
|