RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1983, Volume 121(163), Number 1(5), Pages 60–71 (Mi msb2154)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters

D. G. Vasil'ev


Abstract: The eigenvalue problem
$$ L(\varepsilon,h)f\equiv\varepsilon^{m_0}A_0f+\sum^l_{j=1}h_j\varepsilon^{m_j}A_jf=\lambda f. $$
is considered on an $n$-dimensional compact manifold without boundary. Here the $A_k$, $k=0,1,…,l$, are symmetric scalar classical pseudodifferential operators of orders $m_k$ with leading symbols $a_k(x,\xi)$, $m_0>0$, $m_0\geqslant m_k\geqslant0$, $a_0(x,\xi)>0$ and $\varepsilon$, $h_j$, $j=1,2,…,l$, are small real parameters with $\varepsilon>0$ and $h_j=O(\varepsilon^{1/p})$, where $p$ is a positive integer. The distribution functions $n(\lambda,L(\varepsilon,h))$ of the eigenvalues of the operator $L(\varepsilon,h)$ are studied. Let $[\Lambda_1,\Lambda_2]$ be a fixed interval of the positive half-line ($\Lambda_1>0$). An asymptotic formula with optimal relative error $O(\varepsilon)$ is obtained for $n(\lambda,L(\varepsilon,h))$ as $\varepsilon\to0$ when $\lambda\in[\Lambda_1,\Lambda_2]$.
Bibliography: 10 titles.

Full text: PDF file (620 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1984, 49:1, 61–72

Bibliographic databases:

UDC: 517.2
MSC: Primary 41A60, 58G15, 58G25; Secondary 35S99, 47G05
Received: 03.02.1982

Citation: D. G. Vasil'ev, “Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters”, Mat. Sb. (N.S.), 121(163):1(5) (1983), 60–71; Math. USSR-Sb., 49:1 (1984), 61–72

Citation in format AMSBIB
\Bibitem{Vas83}
\by D.~G.~Vasil'ev
\paper Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 121(163)
\issue 1(5)
\pages 60--71
\mathnet{http://mi.mathnet.ru/msb2154}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=699738}
\zmath{https://zbmath.org/?q=an:0559.35060|0534.35075}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 49
\issue 1
\pages 61--72
\crossref{https://doi.org/10.1070/SM1984v049n01ABEH002697}


Linking options:
  • http://mi.mathnet.ru/eng/msb2154
  • http://mi.mathnet.ru/eng/msb/v163/i1/p60

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. G. Vasil'ev, V. B. Lidskii, “Quasiresonances in the problem of forced vibrations of a thin elastic shell interacting with a liquid”, Funct. Anal. Appl., 20:4 (1986), 267–276  mathnet  crossref  mathscinet  zmath  isi
    2. Levendorskii S., “The Approximate Spectral Projection Method”, Acta Appl. Math., 7:2 (1986), 137–197  crossref  mathscinet  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:150
    Full text:55
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019