RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1985, Volume 128(170), Number 3(11), Pages 383–402 (Mi msb2166)  

This article is cited in 8 scientific papers (total in 8 papers)

On the representation of finite rings by matrices over commutative rings

Yu. N. Mal'tsev


Abstract: The author constructs an infinite series of finite rings $B$, $B^{(m)}$, $m\geqslant2$, which are not embeddable in rings of matrices over commutative rings, and describes their bases of identities and critical rings of the varieties they generate. He shows that finite rings from the ring varieties $\operatorname{var}B$, $\operatorname{var}B^{(m)}$, $m\geqslant2$, $m=(p-1)t+1$, are either representable by matrices over commutative rings or generate the respective varieties. Under a supplementary restriction on a variety $\mathfrak M$ with exponent $p^k$ it is shown that every finite ring from $\mathfrak M$ is representable by matrices over a commutative ring if and only if $\mathfrak M$ does not contain any of the rings $B$, $B^{(m)}$, $m\geqslant2$.
Bibliography: 14 titles.

Full text: PDF file (1234 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 379–402

Bibliographic databases:

UDC: 512
MSC: Primary 16A44; Secondary 16A42, 16A44
Received: 23.07.1984

Citation: Yu. N. Mal'tsev, “On the representation of finite rings by matrices over commutative rings”, Mat. Sb. (N.S.), 128(170):3(11) (1985), 383–402; Math. USSR-Sb., 56:2 (1987), 379–402

Citation in format AMSBIB
\Bibitem{Mal85}
\by Yu.~N.~Mal'tsev
\paper On the representation of finite rings by matrices over commutative rings
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 128(170)
\issue 3(11)
\pages 383--402
\mathnet{http://mi.mathnet.ru/msb2166}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=815271}
\zmath{https://zbmath.org/?q=an:0607.16015|0595.16011}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 379--402
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003042}


Linking options:
  • http://mi.mathnet.ru/eng/msb2166
  • http://mi.mathnet.ru/eng/msb/v170/i3/p383

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Bokut', “Embedding of rings”, Russian Math. Surveys, 42:4 (1987), 105–138  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Bokut L., “Some New Results in the Combinatorial Theory of Rings and Groups”, Lect. Notes Math., 1352 (1988), 34–43  crossref  mathscinet  zmath  isi
    3. A.Z. Anan'in, “On Representability of a Finite Local Ring”, Journal of Algebra, 228:2 (2000), 417  crossref
    4. A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. Mekei, “On the representation of finite rings by matrices over commutative rings”, J. Math. Sci., 197:4 (2014), 548–557  mathnet  crossref
    6. A. Mekei, L. Oyuuntsetseg, “Representation of some finite rings by matrices over commutative rings”, Algebra and Logic, 53:4 (2014), 287–297  mathnet  crossref  mathscinet  isi
    7. A. Mekei, “Varieties of associative rings containing a finite ring that is nonrepresentable by a matrix ring over a commutative ring”, J. Math. Sci., 213:2 (2016), 254–267  mathnet  crossref  mathscinet
    8. L. A. Bokut, “Early history of the theory of rings in Novosibirsk”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2, 5–23  mathnet  mathscinet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:241
    Full text:78
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020