RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1985, Volume 128(170), Number 4(12), Pages 474–491 (Mi msb2178)  

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotic expansion of the state density and the spectral function of a Hill operator

D. Schenk, M. A. Shubin


Abstract: Complete asymptotic expansions are obtained for the integrated state density and the spectral function of a Hill operator with smooth potential. These expansions can be differentiated any number of times outside small neighborhoods of forbidden zones.
Bibliography: 18 titles.

Full text: PDF file (950 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 473–490

Bibliographic databases:

UDC: 517.984.5
MSC: Primary 34B25, 34B30, 34E05; Secondary 35J10, 70H99
Received: 24.07.1984

Citation: D. Schenk, M. A. Shubin, “Asymptotic expansion of the state density and the spectral function of a Hill operator”, Mat. Sb. (N.S.), 128(170):4(12) (1985), 474–491; Math. USSR-Sb., 56:2 (1987), 473–490

Citation in format AMSBIB
\Bibitem{SchShu85}
\by D.~Schenk, M.~A.~Shubin
\paper Asymptotic expansion of the state density and the spectral function of a~Hill operator
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 128(170)
\issue 4(12)
\pages 474--491
\mathnet{http://mi.mathnet.ru/msb2178}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=820398}
\zmath{https://zbmath.org/?q=an:0624.34018|0604.34015}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 473--490
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003047}


Linking options:
  • http://mi.mathnet.ru/eng/msb2178
  • http://mi.mathnet.ru/eng/msb/v170/i4/p474

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Volovoy A., “Improved 2-Term Asymptotics for the Eigenvalue Distribution Function of an Elliptic Operator on a Compact Manifold”, Commun. Partial Differ. Equ., 15:11 (1990), 1509–1563  crossref  mathscinet  zmath  isi
    2. Ilin V., Antoniou I., “On the Uniform Equiconvergence with the Fourier Integral, on the Whole Line R, for an Arbitrary l(P)(R) Function, of the Spectral Expansion Related to the Selfadjoint Extension of the Hill Operator”, Differ. Equ., 31:8 (1995), 1253–1266  mathnet  mathscinet  isi
    3. Antoniou I. Ilin V., “The Uniform, Over the Whole Line R Estimates of Spectral Expansions Related to the Selfadjoint Extensions of the Hill Operator and of the Schrodinger Operator with a Bounded and Measurable Potential”, Comput. Math. Appl., 34:5-6 (1997), 627–632  crossref  mathscinet  zmath  isi
    4. Leonid Parnovski, Roman Shterenberg, “Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator”, Invent math, 2008  crossref  isi
    5. Leonid Parnovski, Roman Shterenberg, “Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators”, Ann. Math, 176:2 (2012), 1039  crossref
    6. Schwarzenberger F., “Uniform Approximation of the Integrated Density of States for Long-Range Percolation Hamiltonians”, J. Stat. Phys., 146:6 (2012), 1156–1183  crossref  mathscinet  zmath  adsnasa  isi
    7. Sergey Morozov, Leonid Parnovski, Roman Shterenberg, “Complete Asymptotic Expansion of the Integrated Density of States of Multidimensional Almost-Periodic Pseudo-Differential Operators”, Ann. Henri Poincaré, 2013  crossref
    8. Yulia Karpeshina, Young-Ran Lee, “Spectral properties of a limit-periodic Schrödinger operator in dimension two”, JAMA, 120:1 (2013), 1  crossref
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:274
    Full text:68
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019