Matematicheskii Sbornik. Novaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1983, Volume 121(163), Number 3(7), Pages 310–326 (Mi msb2195)  

This article is cited in 3 scientific papers (total in 3 papers)

Scattering of plane longitudinal elastic waves by a slender cavity of revolution. The case of axial incidence

G. V. Zhdanova


Abstract: The system of equations of elasticity theory
$$ A(\partial_x)\overline u+\omega^2\rho\overline u=0,\quad x\in D_\varepsilon;\qquad T\overline u=0,\quad x\in S_\varepsilon, $$
is solved in a homogeneous isotropic medium. Here $A(\partial_x)$ is a matrix differential operator, $T$ is the stress operator, $x\in R^3$, $\varepsilon>0$ is a small parameter, $S_\varepsilon$ is a smooth bounded closed surface of revolution, and $D_\varepsilon$ is the exterior of $S_\varepsilon$. The case where
$$ \overline u(x)=A_le^{ik_lz}\overline i_z+\overline u^{(s)}(x),\qquad A_l=\mathrm{const}, $$
is considered. The reflected wave $\overline u^{(s)}(x)$ satisfies the radiation condition. The asymptotics of $\overline u^{(s)}(x)$ is constructed with $O(\varepsilon^{(m)})$ precision as $\varepsilon\to+0$, where $m>0$ is arbitrary.
The formulas obtained are useful everywhere near $S_\varepsilon$, including its endpoints, and at a distance. The asymptotics of the scattering amplitudes of the reflected waves is found.
Figures: 1.
Bibliography: 16 titles.

Full text: PDF file (698 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1984, 49:2, 305–323

Bibliographic databases:

UDC: 531.262
MSC: 73D25
Received: 05.01.1982

Citation: G. V. Zhdanova, “Scattering of plane longitudinal elastic waves by a slender cavity of revolution. The case of axial incidence”, Mat. Sb. (N.S.), 121(163):3(7) (1983), 310–326; Math. USSR-Sb., 49:2 (1984), 305–323

Citation in format AMSBIB
\Bibitem{Zhd83}
\by G.~V.~Zhdanova
\paper Scattering of plane longitudinal elastic waves by a~slender cavity of revolution. The case of axial incidence
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 121(163)
\issue 3(7)
\pages 310--326
\mathnet{http://mi.mathnet.ru/msb2195}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=707999}
\zmath{https://zbmath.org/?q=an:0571.73023|0533.73031}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 49
\issue 2
\pages 305--323
\crossref{https://doi.org/10.1070/SM1984v049n02ABEH002712}


Linking options:
  • http://mi.mathnet.ru/eng/msb2195
  • http://mi.mathnet.ru/eng/msb/v163/i3/p310

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. V. Zhdanova, “Asymptotics of the solution of the Dirichlet problem for the system of elasticity theory in the exterior of a thin body of revolution”, Math. USSR-Sb., 62:1 (1989), 1–27  mathnet  crossref  mathscinet  zmath
    2. Zhdanova G., “Asymptotics of the Solution of Dirichlet Problem for the System of the Elasticity Theory Equations Outside a Slender Body of Revolution”, 296, no. 5, 1987, 1041–1045  mathscinet  isi
    3. Ming-Chun Cai, Hui-Ji Shi, Xian-Feng Ma, “Yield initiation of compressible material with a central void under dynamic load”, Comptes Rendus Mécanique, 338:4 (2010), 207  crossref  zmath
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:268
    Full text:84
    References:34

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021