RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1982, Volume 118(160), Number 2(6), Pages 252–261 (Mi msb2251)  

This article is cited in 3 scientific papers (total in 3 papers)

A nonlocal boundary value problem for a class of Petrovskii well-posed equations

S. Ya. Yakubov


Abstract: As is well known, the mixed problem for the entire class of Petrovskii well-posed partial differential equations has not been studied. In this paper, a certain subclass of Petrovskii well-posed equations for which it is possible to state and study mixed problems, is isolated. In the rectangle $[0,T]\times[0,1]$, consider the equation
$$ D_t^2u+aD_tD_x^{2k}u+bD_x^{2p}u+\sum\limits_{\alpha\leqslant{2k-1}} a_\alpha(t,x)D_tD_x^\alpha+\sum\limits_{\alpha\leqslant{2p-1}}b_\alpha(t,x)D_x^\alpha u=f(t, x) $$
with boundary conditions
$$ L_\nu u=\alpha_\nu u_x^{(q_\nu)}(t,0)+\beta_\nu u_x^{(q_\nu)}(t,1)+ T_\nu u(t,\cdot)=0, \qquad \nu=1\div2k, $$
for $p\leqslant k$, where $|\alpha_\nu|+|\beta_\nu|\ne 0$, $\nu=1\div2k$, $0\leqslant q_\nu\leqslant q_{\nu+1}$, $q_\nu<q_{\nu+2}$, $T_\nu$ is a continuous linear functional in $W_q^{q_\nu}(0, 1)$, $q<+\infty$, and for $k<p<2k$
$$ L_{2k+s}u=L_{n_s}u^{(2k)}=\alpha_{n_s}u_x^{(q_{n_s}+2k)}(t,0)+ \beta_{n_s}u_x^{(q_{n_s}+2k)}(t,1)+T_{n_s}u_x^{(2k)}(t,\cdot)=0, $$
$s=1\div2p-2k$, $1\leqslant n_s\leqslant2k$, and with initial conditions $u(0,x)=u_0(x)$ and $u'_t(0,x)=u_1(x)$.
Well-posedness conditions are found for this problem.
Bibliography: 9 titles.

Full text: PDF file (437 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1983, 46:2, 255–265

Bibliographic databases:

UDC: 517.95
MSC: 35M05
Received: 23.05.1980 and 21.04.1981

Citation: S. Ya. Yakubov, “A nonlocal boundary value problem for a class of Petrovskii well-posed equations”, Mat. Sb. (N.S.), 118(160):2(6) (1982), 252–261; Math. USSR-Sb., 46:2 (1983), 255–265

Citation in format AMSBIB
\Bibitem{Yak82}
\by S.~Ya.~Yakubov
\paper A~nonlocal boundary value problem for a class of Petrovskii well-posed equations
\jour Mat. Sb. (N.S.)
\yr 1982
\vol 118(160)
\issue 2(6)
\pages 252--261
\mathnet{http://mi.mathnet.ru/msb2251}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=658791}
\zmath{https://zbmath.org/?q=an:0549.35053|0514.35039}
\transl
\jour Math. USSR-Sb.
\yr 1983
\vol 46
\issue 2
\pages 255--265
\crossref{https://doi.org/10.1070/SM1983v046n02ABEH002779}


Linking options:
  • http://mi.mathnet.ru/eng/msb2251
  • http://mi.mathnet.ru/eng/msb/v160/i2/p252

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Balalayev M., “On Correct Solvability of Arbitrary-Order Differential-Operator Equations”, 317, no. 3, 1991, 526–529  isi
    2. Favini A., “Parabolicity of 2nd-Order Differential-Equations in Hilbert-Space”, Semigr. Forum, 42:3 (1991), 303–312  crossref  mathscinet  zmath  isi
    3. Aliev I., “Operator-Differential Equations with Nonregular Boundary-Conditions and Applications”, Differ. Equ., 30:1 (1994), 84–93  mathnet  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:225
    Full text:70
    References:59

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020