RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. сб., 1983, том 122(164), номер 1(9), страницы 41–63 (Mi msb2273)  

О свойствах функций ограниченной вариации на множестве

Т. П. Лукашенко


Аннотация: В § 1 статьи обобщается неравенство А. Н. Колмогорова для сопряженных функций. Основной является теорема 2, в которой, например, доказано, что если $F$ – $2\pi$-периодическая с точностью до линейности функция ограниченной вариации в узком смысле на множестве $E\subset[0,2\pi)$, то для любого $\lambda>0$
$$ |\{x\in E:\sup_{0\leqslant r>1}|\overline{F'}(r,x)|>\lambda\}|^*\leqslant\frac C\lambda{\operatornamewithlimits{Var}_E}^*F. $$

В § 2 обобщается известная теорема М. Рисса и Ф. Рисса. Доказано, в частности, следующее.
Теорема 5. {\it Пусть $2\pi$-периодическая суммируемая функция $\Phi$ и ее сопряженная $\overline\Phi$ всюду определены$,$ ограничены и ограниченной вариации в узком смысле на множестве $E\subset[0,2\pi);$ если в точке $x$ существуют $\lim_{E\ni t\to x}\Phi(t)$ и $\lim_{E\ni t\to x}\overline\Phi(t),$ то $\Phi(x)=\lim_{E\ni t\to x}\Phi(t),$ $\overline\Phi(x)=\lim\limits_{E\ni t\to x}\overline\Phi(t)$. Тогда $\Phi$ и $\overline\Phi$ абсолютно непрерывны в узком смысле на $E$.}
Библиография: 14 названий.

Полный текст: PDF файл (1074 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Mathematics of the USSR-Sbornik, 1985, 50:1, 41–66

Реферативные базы данных:

УДК: 517.51
MSC: Primary 26A45, 26A46, 42A50; Secondary 26A39, 26A42, 30E99
Поступила в редакцию: 24.06.1982

Образец цитирования: Т. П. Лукашенко, “О свойствах функций ограниченной вариации на множестве”, Матем. сб., 122(164):1(9) (1983), 41–63; T. P. Lukashenko, “On properties of functions of bounded variation on a set”, Math. USSR-Sb., 50:1 (1985), 41–66

Цитирование в формате AMSBIB
\RBibitem{Luk83}
\by Т.~П.~Лукашенко
\paper О~свойствах функций ограниченной вариации на множестве
\jour Матем. сб.
\yr 1983
\vol 122(164)
\issue 1(9)
\pages 41--63
\mathnet{http://mi.mathnet.ru/msb2273}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=715834}
\zmath{https://zbmath.org/?q=an:0609.42010|0559.42005}
\transl
\by T.~P.~Lukashenko
\paper On properties of functions of bounded variation on a~set
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 1
\pages 41--66
\crossref{https://doi.org/10.1070/SM1985v050n01ABEH002732}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/msb2273
  • http://mi.mathnet.ru/rus/msb/v164/i1/p41

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Просмотров:
    Эта страница:472
    Полный текст:102
    Литература:45
    Первая стр.:3

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019