RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1997, Volume 188, Number 5, Pages 59–84 (Mi msb230)  

This article is cited in 13 scientific papers (total in 13 papers)

Adele constructions of direct images of differentials and symbols

D. V. Osipov

M. V. Lomonosov Moscow State University

Abstract: Explicit constructions are given for certain residues and symbols from differentials and $K_2$-groups of two-dimensional local fields to differentials and multiplicative groups of one-dimensional local fields. The maps obtained are used to construct the Gysin morphisms between the cohomology of the sheaves of regular differential forms and between the Chow groups in the case of a projective morphism of an algebraic surface onto an algebraic curve.

DOI: https://doi.org/10.4213/sm230

Full text: PDF file (388 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1997, 188:5, 697–723

Bibliographic databases:

UDC: 512.71+512.73
MSC: Primary 14F10; Secondary 11R56, 11S70, 14B15, 19C20, 55N99, 12J10
Received: 17.07.1996

Citation: D. V. Osipov, “Adele constructions of direct images of differentials and symbols”, Mat. Sb., 188:5 (1997), 59–84; Sb. Math., 188:5 (1997), 697–723

Citation in format AMSBIB
\Bibitem{Osi97}
\by D.~V.~Osipov
\paper Adele constructions of direct images of differentials and symbols
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 5
\pages 59--84
\mathnet{http://mi.mathnet.ru/msb230}
\crossref{https://doi.org/10.4213/sm230}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1478630}
\zmath{https://zbmath.org/?q=an:0909.14011}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 5
\pages 697--723
\crossref{https://doi.org/10.1070/sm1997v188n05ABEH000230}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YD90100004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286533}


Linking options:
  • http://mi.mathnet.ru/eng/msb230
  • https://doi.org/10.4213/sm230
  • http://mi.mathnet.ru/eng/msb/v188/i5/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Parshin, “On a Ring of Formal Pseudodifferential Operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280  mathnet  mathscinet  zmath
    2. S. O. Gorchinskiy, “An adelic resolution for homology sheaves”, Izv. Math., 72:6 (2008), 1187–1252  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Pal A., “On the Kernel and the Image of the Rigid Analytic Regulator in Positive Characteristic”, Publications of the Research Institute For Mathematical Sciences, 46:2 (2010), 255–288  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. Morrow M., “An Explicit Approach to Residues on and Dualizing Sheaves of Arithmetic Surfaces”, N. Y. J. Math., 16 (2010), 575–627  mathscinet  zmath  isi
    5. Matthew Morrow, “Grothendieck’s trace map for arithmetic surfaces via residues and higher adèles”, Algebra Number Theory, 6:7 (2012), 1503  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. A. N. Parshin, “Questions and remarks to the Langlands programme”, Russian Math. Surveys, 67:3 (2012), 509–539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Liu D., “Kato's Residue Homomorphisms and Reciprocity Laws on Arithmetic Surfaces”, Adv. Math., 251 (2014), 1–21  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Braunling O., “Geometric Two-Dimensional Ideles With Cycle Module Coefficients”, Math. Nachr., 287:17-18 (2014), 1954–1971  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. Chinburg T., Pappas G., Taylor M.J., “Higher Adeles and Non-Abelian Riemann-Roch”, Adv. Math., 281 (2015), 928–1024  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    11. Liu D., “Residues and duality on semi-local two-dimensional adeles”, J. Algebra, 448 (2016), 74–83  crossref  mathscinet  zmath  isi  scopus
    12. Osipov D. Zhu X., “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebr. Geom., 25:4 (2016), 703–774  crossref  mathscinet  zmath  isi  scopus
    13. Osipov D.V., “Second Chern Numbers of Vector Bundles and Higher Adeles”, Bull. Korean. Math. Soc., 54:5 (2017), 1699–1718  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:317
    Full text:108
    References:44
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020