RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1981, Volume 114(156), Number 4, Pages 523–565 (Mi msb2350)  

This article is cited in 6 scientific papers (total in 6 papers)

Green's matrices of boundary value problems for Petrovskii parabolic systems of general form. II

S. D. Ivasishen


Abstract: Green's matrices are constructed for general nonhomogeneous boundary value problems for Petrovskii parabolic systems of differential equations of arbitrary order in unbounded as well as bounded domains with smooth, generally noncylindrical, lateral boundaries. The properties of these matrices are studied, and sharp estimates obtained for their derivatives with respect to all arguments.
For Part I, see Mat. Sb. (N.S.), v. 114(156) (1981), 110–166.
Bibliography: 5 titles.

Full text: PDF file (3290 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1982, 42:4, 461–498

Bibliographic databases:

UDC: 517.946
MSC: Primary 35K50; Secondary 35B45
Received: 10.09.1979

Citation: S. D. Ivasishen, “Green's matrices of boundary value problems for Petrovskii parabolic systems of general form. II”, Mat. Sb. (N.S.), 114(156):4 (1981), 523–565; Math. USSR-Sb., 42:4 (1982), 461–498

Citation in format AMSBIB
\Bibitem{Iva81}
\by S.~D.~Ivasishen
\paper Green's matrices of boundary value problems for Petrovskii parabolic systems of general form.~II
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 114(156)
\issue 4
\pages 523--565
\mathnet{http://mi.mathnet.ru/msb2350}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=615340}
\zmath{https://zbmath.org/?q=an:0484.35048|0468.35049}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 42
\issue 4
\pages 461--498
\crossref{https://doi.org/10.1070/SM1982v042n04ABEH002386}


Linking options:
  • http://mi.mathnet.ru/eng/msb2350
  • http://mi.mathnet.ru/eng/msb/v156/i4/p523

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Drin M., Ivasishen S., “Greens Matrix of a General Boundary-Value Problem for the Petrovsky,I.G. Parabolic-System with Discontinuous Coefficients”, no. 11, 1984, 7–10  mathscinet  zmath  isi
    2. Ivasishen S., “Conjugate Greens Operators and the Correct Solvability of Parabolic Boundary-Value Problem in Negative Holder Spaces”, Differ. Equ., 20:3 (1984), 363–372  mathnet  mathscinet  zmath  isi
    3. V. A. Kozlov, “The Green function and Poisson kernels of a parabolic problem in a domain with a conical point”, Russian Math. Surveys, 43:3 (1988), 211–213  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Akhmetov, DR, “A criterion for existence of L-1-norms for higher-order derivatives of solutions to a homogeneous parabolic equation”, Siberian Mathematical Journal, 41:3 (2000), 405  mathnet  crossref  isi
    5. Menaldi J.-L., Tubaro L., “Green and Poisson Functions with Wentzell Boundary Conditions”, J. Differ. Equ., 237:1 (2007), 77–115  crossref  mathscinet  zmath  isi
    6. Gurevich P., Tikhomirov S., “Uniqueness of Transverse Solutions for Reaction-Diffusion Equations with Spatially Distributed Hysteresis”, Nonlinear Anal.-Theory Methods Appl., 75:18 (2012), 6610–6619  crossref  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:316
    Full text:103
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019