RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1981, Volume 115(157), Number 3(7), Pages 364–390 (Mi msb2402)  

This article is cited in 3 scientific papers (total in 3 papers)

Boundary properties of analytic solutions of differential equations of infinite order

Yu. F. Korobeinik


Abstract: Let $\mathscr L(\lambda)$ be an entire function from the class $[1,0]$ with simple zeros $\{\lambda_n\}$ and let $\mathscr G$ be a bounded convex domain. In this paper particular solutions of the equation
\begin{equation} (\mathscr L(D))(z)=f(z),\qquad z\in\mathscr G, \tag{I} \end{equation}
are constructed which are analytic in $\mathscr G$ and possess a definite smoothness on the boundary of $\mathscr G$, for the case in which $f$ is analytic in $\mathscr G$ and sufficiently smooth on the boundary. In particular, it is shown that if $\mathscr L(\lambda)$ is an entire function of completely regular growth with proximate order $\rho(r)$, $\rho(r)\to\rho$, $0<\rho<1$, with a positive indicator and a regular set of roots, then for an arbitrary function $f$, analytic in $\mathscr G$ and continuous on $\overline{\mathscr G}$, equation (I) has an effectively defined particular solution analytic in $\mathscr G$ and infinitely differentiable at each boundary point of $\mathscr G$.
Bibliography: 14 titles.

Full text: PDF file (2731 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1982, 43:3, 323–345

Bibliographic databases:

UDC: 517.9
MSC: Primary 34A35, 34B05; Secondary 30D15
Received: 11.09.1980

Citation: Yu. F. Korobeinik, “Boundary properties of analytic solutions of differential equations of infinite order”, Mat. Sb. (N.S.), 115(157):3(7) (1981), 364–390; Math. USSR-Sb., 43:3 (1982), 323–345

Citation in format AMSBIB
\Bibitem{Kor81}
\by Yu.~F.~Korobeinik
\paper Boundary properties of analytic solutions of differential equations of infinite order
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 115(157)
\issue 3(7)
\pages 364--390
\mathnet{http://mi.mathnet.ru/msb2402}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=628216}
\zmath{https://zbmath.org/?q=an:0492.34010|0475.34007}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 3
\pages 323--345
\crossref{https://doi.org/10.1070/SM1982v043n03ABEH002451}


Linking options:
  • http://mi.mathnet.ru/eng/msb2402
  • http://mi.mathnet.ru/eng/msb/v157/i3/p364

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. B. Sherstyukov, “Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation”, Sb. Math., 200:3 (2009), 455–469  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. B. Sherstyukov, “Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series”, Sb. Math., 202:12 (2011), 1853–1871  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. V. B. Sherstyukov, “Asimptoticheskie svoistva tselykh funktsii s zadannym zakonom raspredeleniya kornei”, Kompleksnyi analiz. Tselye funktsii i ikh primeneniya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 161, VINITI RAN, M., 2019, 104–129  mathnet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:236
    Full text:76
    References:56

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019