RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1979, Volume 110(152), Number 1(9), Pages 51–65 (Mi msb2422)  

This article is cited in 10 scientific papers (total in 10 papers)

On the product of two groups that are close to being nilpotent

L. S. Kazarin


Abstract: The following theorem is proved.
Teorem. A finite group representable as the product of two subgroups, each of which has a nilpotent subgroup of index at most $2$, is solvable.
Bibliography: 19 titles.

Full text: PDF file (1644 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1981, 38:1, 47–59

Bibliographic databases:

UDC: 519.44
MSC: Primary 20D40; Secondary 20D10
Received: 04.07.1978

Citation: L. S. Kazarin, “On the product of two groups that are close to being nilpotent”, Mat. Sb. (N.S.), 110(152):1(9) (1979), 51–65; Math. USSR-Sb., 38:1 (1981), 47–59

Citation in format AMSBIB
\Bibitem{Kaz79}
\by L.~S.~Kazarin
\paper On the product of two groups that are close to being nilpotent
\jour Mat. Sb. (N.S.)
\yr 1979
\vol 110(152)
\issue 1(9)
\pages 51--65
\mathnet{http://mi.mathnet.ru/msb2422}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=548516}
\zmath{https://zbmath.org/?q=an:0449.20040|0419.20023}
\transl
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 1
\pages 47--59
\crossref{https://doi.org/10.1070/SM1981v038n01ABEH001216}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981LB83400004}


Linking options:
  • http://mi.mathnet.ru/eng/msb2422
  • http://mi.mathnet.ru/eng/msb/v152/i1/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kazarin L., “On Factorizable Groups”, 256, no. 1, 1981, 26–29  mathscinet  zmath  isi
    2. Yu. I. Merzlyakov, “The group theory problems of the Kourovka Notebook – progress from the sixth to the seventh symposium”, Russian Math. Surveys, 37:2 (1982), 165–191  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Fisman E., “Non-Simplicity of Certain Finite Factorizable Groups”, J. Algebra, 75:1 (1982), 198–208  crossref  mathscinet  zmath  isi
    4. Kazarin L., “The Product of Finite-Groups”, 269, no. 3, 1983, 528–531  mathscinet  zmath  isi
    5. Fisman E., “On the Product of 2 Finite-Groups with Centers of Even Order”, J. Algebra, 84:2 (1983), 482–492  crossref  mathscinet  zmath  isi
    6. L. S. Kazarin, “On a problem of Szép”, Math. USSR-Izv., 28:3 (1987), 467–495  mathnet  crossref  mathscinet  zmath
    7. V. D. Mazurov, “Solved problems in the Kourovka Notebook”, Russian Math. Surveys, 46:5 (1991), 137–182  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. L. S. Kazarin, L. A. Kurdachenko, “Finiteness conditions and factorizations in infinite groups”, Russian Math. Surveys, 47:3 (1992), 81–126  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. Amberg B., Kazarin L., “Factorizations of Groups and Related Topics”, Sci. China Ser. A-Math., 52:2 (2009), 217–230  crossref  mathscinet  zmath  adsnasa  isi
    10. B. Amberg, L. S. Kazarin, “$ABA$-groups with cyclic subgroup $B$”, Tr. IMM UrO RAN, 18, no. 3, 2012, 10–22  mathnet  elib
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:482
    Full text:87
    References:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020