RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1981, Volume 116(158), Number 4(12), Pages 539–546 (Mi msb2482)  

This article is cited in 3 scientific papers (total in 3 papers)

Uniqueness and stability of the solution of a problem of geometry in the large

Yu. E. Anikonov, V. N. Stepanov


Abstract: This paper considers the problem of determining a convex surface from the area $F(n)$ of its orthogonal projection on any plane $(x,n)=0$ and the area $S(n)$ of the portion of the surface illuminated in the direction $n$. It is proved that in a certain class a convex surface is uniquely defined (up to translation) by a function $\varphi(n)=2aF(n)+bS(n)$ for $a\ne0$, $b\ne0$, $a+b\ne0$. Moreover, the surface is analytic if and only if $\varphi(n)$ is an analytic function on the unit sphere. The surface is shown to be stable, and a quantitative estimate related to stability is given.
Bibliography: 6 titles.

Full text: PDF file (634 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1983, 44:4, 483–490

Bibliographic databases:

UDC: 514.17
MSC: 53C45
Received: 23.12.1980

Citation: Yu. E. Anikonov, V. N. Stepanov, “Uniqueness and stability of the solution of a problem of geometry in the large”, Mat. Sb. (N.S.), 116(158):4(12) (1981), 539–546; Math. USSR-Sb., 44:4 (1983), 483–490

Citation in format AMSBIB
\Bibitem{AniSte81}
\by Yu.~E.~Anikonov, V.~N.~Stepanov
\paper Uniqueness and stability of the solution of a~problem of geometry in the large
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 116(158)
\issue 4(12)
\pages 539--546
\mathnet{http://mi.mathnet.ru/msb2482}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=665854}
\zmath{https://zbmath.org/?q=an:0507.53041|0481.53050}
\transl
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 4
\pages 483--490
\crossref{https://doi.org/10.1070/SM1983v044n04ABEH000980}


Linking options:
  • http://mi.mathnet.ru/eng/msb2482
  • http://mi.mathnet.ru/eng/msb/v158/i4/p539

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stefano Campi, “Recovering a centred convex body from the areas of its shadows: a stability estimate”, Annali di Matematica, 151:1 (1988), 289  crossref  mathscinet  zmath
    2. Golubyatnikov V., “Stability Problems of the Reconstruction of Some Compacts From their Projections”, 322, no. 1, 1992, 20–21  mathscinet  zmath  isi
    3. V. N. Stepanov, “Opredelenie kompaktnykh mnozhestv po funktsionalam ot nikh”, Sib. elektron. matem. izv., 2 (2005), 167–185  mathnet  mathscinet  zmath
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:336
    Full text:86
    References:38
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020