RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. сб., 1978, том 105(147), номер 3, страницы 342–370 (Mi msb2528)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Существование оптимальных квадратурных формул с заданными кратностями узлов

Б. Д. Боянов


Аннотация: Пусть $R_p(\overline x)$ – погрешность наилучшего метода интегрирования в классе $W^r_p[a,b]$ при узлах $(x_k)_1^n$ с кратностями $(\nu_k)_1^n$, т.е. при $\overline x=\{(x_1,\nu_1),…,(x_n,\nu_n)\}$. Показано, что при $1<p<\infty$ для каждой системы кратностей $(\nu_k)_1^n$, удовлетворяющей неравенствам $1\leqslant\nu_k\leqslant r$, $k=1,…,n$,
$$ \inf\{R_p(\overline x)\mid\overline{x}=\{(x_1,\nu_1),…,(x_n,\nu_n)\}, a\leqslant x_1<…<x_n\leqslant b\} $$
достигается для узлов $(x_k^*)_1^n$ с теми же кратностями $(\nu_k)_1^n$. При этом $a< x_1^*$ и $x_n^*<b$.
Библиография: 20 названий.

Полный текст: PDF файл (2187 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Mathematics of the USSR-Sbornik, 1978, 34:3, 301–326

Реферативные базы данных:

УДК: 517.5
MSC: Primary 41A50; Secondary 46E35
Поступила в редакцию: 23.02.1977

Образец цитирования: Б. Д. Боянов, “Существование оптимальных квадратурных формул с заданными кратностями узлов”, Матем. сб., 105(147):3 (1978), 342–370; B. D. Boyanov, “The existence of optimal quadrature formulas with given multiplicities of nodes”, Math. USSR-Sb., 34:3 (1978), 301–326

Цитирование в формате AMSBIB
\RBibitem{Boy78}
\by Б.~Д.~Боянов
\paper Существование оптимальных квадратурных формул с~заданными кратностями узлов
\jour Матем. сб.
\yr 1978
\vol 105(147)
\issue 3
\pages 342--370
\mathnet{http://mi.mathnet.ru/msb2528}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=483318}
\zmath{https://zbmath.org/?q=an:0405.41020|0423.41018}
\transl
\by B.~D.~Boyanov
\paper The existence of optimal quadrature formulas with given multiplicities of~nodes
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 3
\pages 301--326
\crossref{https://doi.org/10.1070/SM1978v034n03ABEH001161}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/msb2528
  • http://mi.mathnet.ru/rus/msb/v147/i3/p342

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Женсыкбаев, “Моносплайны минимальной нормы и наилучшие квадратурные формулы”, УМН, 36:4(220) (1981), 107–159  mathnet  mathscinet  zmath  adsnasa; A. A. Zhensykbaev, “Monosplines of minimal norm and the best quadrature formulae”, Russian Math. Surveys, 36:4 (1981), 121–180  crossref  isi
    2. Н. П. Корнейчук, “С. М. Никольский и развитие исследований по теории приближения функций в СССР”, УМН, 40:5(245) (1985), 71–131  mathnet  mathscinet  zmath  adsnasa; N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156  crossref  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Просмотров:
    Эта страница:122
    Полный текст:52
    Литература:17

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019