|
This article is cited in 7 scientific papers (total in 7 papers)
On the largest nilpotent ideal in algebras satisfying Capelli identities
K. A. Zubrilin M. V. Lomonosov Moscow State University
Abstract:
It is proved that in any finitely generated algebra of finite signature over an arbitrary field or commutative associative Noetherian ring satisfying the Capelli identities of some order there exists a largest nilpotent ideal.
DOI:
https://doi.org/10.4213/sm253
Full text:
PDF file (230 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 1997, 188:8, 1203–1211
Bibliographic databases:
UDC:
512
MSC: 17A30 Received: 08.10.1996
Citation:
K. A. Zubrilin, “On the largest nilpotent ideal in algebras satisfying Capelli identities”, Mat. Sb., 188:8 (1997), 93–102; Sb. Math., 188:8 (1997), 1203–1211
Citation in format AMSBIB
\Bibitem{Zub97}
\by K.~A.~Zubrilin
\paper On the largest nilpotent ideal in algebras satisfying Capelli identities
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 8
\pages 93--102
\mathnet{http://mi.mathnet.ru/msb253}
\crossref{https://doi.org/10.4213/sm253}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1481398}
\zmath{https://zbmath.org/?q=an:0892.17003}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 8
\pages 1203--1211
\crossref{https://doi.org/10.1070/sm1997v188n08ABEH000253}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YJ74900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286453}
Linking options:
http://mi.mathnet.ru/eng/msb253https://doi.org/10.4213/sm253 http://mi.mathnet.ru/eng/msb/v188/i8/p93
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
K. A. Zubrilin, “On the Baer ideal in algebras satisfying Capelli identities”, Sb. Math., 189:12 (1998), 1809–1818
-
Zubrilin K.A., “Combinatorial aspects of Capelli identities and structure of algebras”, Formal Power Series and Algebraic Combinatorics, 2000, 785–788
-
A. Ya. Belov, “On Rings Asymptotically Close to Associative Rings”, Siberian Adv. Math., 17:4 (2007), 227–267
-
A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126
-
C. Procesi, “The geometry of polynomial identities”, Izv. Math., 80:5 (2016), 910–953
-
KanelBelov A. Karasik Y. Rowen L., “Computational Aspects of Polynomial Identities: Vol 1, Kemer'S Theorems, 2Nd Edition”, Computational Aspects of Polynomial Identities: Vol 1, Kemer'S Theorems, 2Nd Edition, Monographs and Research Notes in Mathematics, 16, Crc Press-Taylor & Francis Group, 2016, 1–407
-
A. N. Blagovisnaya, “Klassicheskie radikaly i tsentroid Martindeila artinovykh i neterovykh algebr Li”, Chebyshevskii sb., 20:1 (2019), 313–353
|
Number of views: |
This page: | 185 | Full text: | 98 | References: | 23 | First page: | 1 |
|