RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1978, Volume 106(148), Number 2(6), Pages 154–161 (Mi msb2562)  

This article is cited in 4 scientific papers (total in 4 papers)

Integrability of the Euler equations on homogeneous symplectic manifolds

Dào Trong Thi


Abstract: Any strictly homogeneous symplectic manifold $M$ with a group of motions $\mathscr G$ may be considered as an orbit of the coadjoint action of $\mathscr G$. Therefore all Hamiltonian systems defined on an orbit, in particular Euler's equations, are carried over to $M$ in a natural way. In this paper a multiparameter family of systems of Euler equations is constructed on $M$, and their complete integrability (in the Liouville sense) is proved.
Bibliography: 6 titles.

Full text: PDF file (893 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1978, 34:6, 707–713

Bibliographic databases:

UDC: 513.944
MSC: Primary 58F05, 22E60; Secondary 34C35, 34C40
Received: 21.03.1977

Citation: Dào Trong Thi, “Integrability of the Euler equations on homogeneous symplectic manifolds”, Mat. Sb. (N.S.), 106(148):2(6) (1978), 154–161; Math. USSR-Sb., 34:6 (1978), 707–713

Citation in format AMSBIB
\Bibitem{Dao78}
\by D\`ao Trong Thi
\paper Integrability of the Euler equations on homogeneous symplectic manifolds
\jour Mat. Sb. (N.S.)
\yr 1978
\vol 106(148)
\issue 2(6)
\pages 154--161
\mathnet{http://mi.mathnet.ru/msb2562}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=503590}
\zmath{https://zbmath.org/?q=an:0394.53024|0422.53018}
\transl
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 6
\pages 707--713
\crossref{https://doi.org/10.1070/SM1978v034n06ABEH001342}


Linking options:
  • http://mi.mathnet.ru/eng/msb2562
  • http://mi.mathnet.ru/eng/msb/v148/i2/p154

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Trofimov, A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems”, Funct. Anal. Appl., 17:1 (1983), 23–29  mathnet  crossref  mathscinet  zmath  isi
    2. V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. V. Brailov, “Construction of completely integrable geodesic flows on compact symmetric spaces”, Math. USSR-Izv., 29:1 (1987), 19–31  mathnet  crossref  mathscinet  zmath
    4. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:159
    Full text:41
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019