Matematicheskii Sbornik. Novaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1980, Volume 111(153), Number 2, Pages 293–307 (Mi msb2593)  

This article is cited in 1 scientific paper (total in 2 paper)

On the representation of integral-valued random measures and local martingales by means of random measures with deterministic compensators

Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev


Abstract: The relation $\mu(\omega;A)=p(\omega;\psi^{-1}_\omega(A))$ between integral-valued measures $\mu(\omega;\cdot )$ and $p(\omega;\cdot )$ and the compensators $\nu(\omega;\cdot )$ and $q( \cdot )$, respectively, is established ($q$ is a deterministic measure), where $\psi_\omega( \cdot )$ is a predictable mapping, provided that $\nu(\omega;A)=q(\psi^{-1}_\omega(A))$. This result is used to represent a local martingale in the form of a sum of stochastic integrals with respect to a continuous Gaussian martingale and the martingale measure $p-q$.
Bibliography: 16 titles.

Full text: PDF file (684 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1981, 39:2, 267–280

Bibliographic databases:

UDC: 519.2
MSC: 60G57, 60G44
Received: 11.01.1979

Citation: Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “On the representation of integral-valued random measures and local martingales by means of random measures with deterministic compensators”, Mat. Sb. (N.S.), 111(153):2 (1980), 293–307; Math. USSR-Sb., 39:2 (1981), 267–280

Citation in format AMSBIB
\Bibitem{KabLipShi80}
\by Yu.~M.~Kabanov, R.~Sh.~Liptser, A.~N.~Shiryaev
\paper On the representation of integral-valued random measures and local martingales by means of random measures with deterministic compensators
\jour Mat. Sb. (N.S.)
\yr 1980
\vol 111(153)
\issue 2
\pages 293--307
\mathnet{http://mi.mathnet.ru/msb2593}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=564354}
\zmath{https://zbmath.org/?q=an:0462.60054|0427.60050}
\transl
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 2
\pages 267--280
\crossref{https://doi.org/10.1070/SM1981v039n02ABEH001515}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981MK40500008}


Linking options:
  • http://mi.mathnet.ru/eng/msb2593
  • http://mi.mathnet.ru/eng/msb/v153/i2/p293

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Theory Probab. Appl., 48:1 (2004), 181–188  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:421
    Full text:118
    References:53
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021