RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1977, Volume 102(144), Number 2, Pages 280–288 (Mi msb2683)  

Commutative rings with subinjective ideals

L. A. Skornyakov


Abstract: An ideal in a commutative ring is called subinjective if it is the homomorphic image of an injective module. It is proved that all ideals in a commutative ring are subinjective if and only if the ring is a direct sum of local rings with this property. Necessary and sufficient conditions are given for all ideals to be subinjective in the local case. In particular, this is the case for self-injective rings whose ideals are linearly ordered, and for local self-injective rings in which the maximal ideal has a nontrivial annihilator.
Bibliography: 7 titles.

Full text: PDF file (740 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1977, 31:2, 249–256

Bibliographic databases:

UDC: 519.48
MSC: 13C10
Received: 20.05.1976

Citation: L. A. Skornyakov, “Commutative rings with subinjective ideals”, Mat. Sb. (N.S.), 102(144):2 (1977), 280–288; Math. USSR-Sb., 31:2 (1977), 249–256

Citation in format AMSBIB
\Bibitem{Sko77}
\by L.~A.~Skornyakov
\paper Commutative rings with subinjective ideals
\jour Mat. Sb. (N.S.)
\yr 1977
\vol 102(144)
\issue 2
\pages 280--288
\mathnet{http://mi.mathnet.ru/msb2683}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=472791}
\zmath{https://zbmath.org/?q=an:0341.13002|0388.13004}
\transl
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 2
\pages 249--256
\crossref{https://doi.org/10.1070/SM1977v031n02ABEH002301}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1977FY72200008}


Linking options:
  • http://mi.mathnet.ru/eng/msb2683
  • http://mi.mathnet.ru/eng/msb/v144/i2/p280

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:133
    Full text:49
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020