General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb. (N.S.), 1976, Volume 99(141), Number 2, Pages 261–281 (Mi msb2751)  

This article is cited in 64 scientific papers (total in 64 papers)

Asymptotics of the solution of the Cauchy problem for the Korteweg–de Vries equation with initial data of step type

E. Ya. Khruslov

Abstract: The method of the inverse scattering problem is used to solve the Cauchy problem for the Korteweg–deVries equation with initial data of step type: $u(x,0)\to-c^2$ ($x\to-\infty$), $u(x,0)\to0$ ($x\to\infty$). Formulas are obtained for transforming the scattering data with respect to the time, making it possible to obtain a solution $u(x,t)$ of the problem for arbitrary $t$ with the aid of linear integral equations of scattering theory. The asymptotic behavior of the solution as $t\to+\infty$ is investigated in a neighborhood of the wave front $(x>4c^2t-\frac1{2c}\ln t^N)$. It is shown that in this region the solution splits up into solitons, the distance between which increases as $\ln t^{1/c}$, and an explicit form for these solitons is derived.
Bibliography: 12 titles.

Full text: PDF file (1622 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1976, 28:2, 229–248

Bibliographic databases:

UDC: 517.946
MSC: Primary 35B40, 35Q99; Secondary 76B25
Received: 21.05.1975

Citation: E. Ya. Khruslov, “Asymptotics of the solution of the Cauchy problem for the Korteweg–de Vries equation with initial data of step type”, Mat. Sb. (N.S.), 99(141):2 (1976), 261–281; Math. USSR-Sb., 28:2 (1976), 229–248

Citation in format AMSBIB
\by E.~Ya.~Khruslov
\paper Asymptotics of the solution of the Cauchy problem for the Korteweg--de~Vries equation with initial data of step type
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 99(141)
\issue 2
\pages 261--281
\jour Math. USSR-Sb.
\yr 1976
\vol 28
\issue 2
\pages 229--248

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bubnov B., “The Cauchy-Problem for the Kortewegdevries Equation”, 251, no. 4, 1980, 777–780  mathscinet  zmath  isi
    2. A. V. Faminskii, “The Cauchy problem for the Korteweg–de Vries equation when the initial data are irregular”, Russian Math. Surveys, 36:3 (1981), 248–249  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Amy Cohen, “A counterexample in the inverse scattering theory for steplike potentials”, Communications in Partial Differential Equations, 7:7 (1982), 883  crossref
    4. Ermakova V., “Asymptotical Solutions of the Cauchy-Problem for the Kortewegde Fries Equation with Non-Decreasing Initial Data of a Special Kind”, no. 7, 1982, 3–6  mathscinet  zmath  isi
    5. S. N. Kruzhkov, A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation”, Math. USSR-Sb., 48:2 (1984), 391–421  mathnet  crossref  mathscinet  zmath
    6. Amy Cohen, “Solutions of the korteweg–devries equation with steplike initial profile”, Communications in Partial Differential Equations, 9:8 (1984), 751  crossref
    7. Stephanos Venakides, “The zero dispersion limit of the korteweg-de vries equation for initial potentials with non-trivial reflection coefficient”, Comm Pure Appl Math, 38:2 (1985), 125  crossref  mathscinet  zmath
    8. V. P. Kotlyarov, E. Ya. Khruslov, “Solitons of the nonlinear Schrödinger equation generated by the continuum”, Theoret. and Math. Phys., 68:2 (1986), 751–761  mathnet  crossref  mathscinet  zmath  isi
    9. Thomas Kappeler, “Solutions of the Korteweg-deVries equation with steplike initial data”, Journal of Differential Equations, 63:3 (1986), 306  crossref
    10. Kotlyarov V., Khruslov E., “Time Asymptotics of the Cauchy-Problem Solution for the Korteweg-Devries Modified Equation with Non-Decreasing Initial Data”, no. 10, 1986, 60–63  mathscinet  isi
    11. Rodin Y., “The Inverse Problem for the Schrodinger-Equation and the Riemann Boundary-Problem”, Lett. Math. Phys., 15:1 (1988), 1–6  crossref  mathscinet  zmath  adsnasa  isi
    12. R. F. Bikbaev, “Korteweg–de Vries equation with finite-gap boundary conditions, and the Whitham deformations of Riemann surfaces”, Funct. Anal. Appl., 23:4 (1989), 257–266  mathnet  crossref  mathscinet  zmath  isi
    13. R. F. Bikbaev, “Large-time asymptotics of the solution of the nonlinear Schrödinger equation with boundary conditions of step type”, Theoret. and Math. Phys., 81:1 (1989), 1011–1017  mathnet  crossref  mathscinet  zmath  isi
    14. R. F. Bikbaev, R. A. Sharipov, “Asymptotics at $t\to\infty$ of the solution to the Cauchy problem for the Korteweg–de Vries equation in the class of potentials with finite-gap behavior as $x\to\pm\infty$”, Theoret. and Math. Phys., 78:3 (1989), 244–252  mathnet  crossref  mathscinet  zmath  isi
    15. V. P. Kotlyarov, “Asymptotic solitons of the sine-Gordon equation”, Theoret. and Math. Phys., 80:1 (1989), 679–689  mathnet  crossref  mathscinet  isi
    16. Kotlyarov V., Khruslov E., “Asymptotic Solitons of the Modified Korteweg-Devries Equation”, Inverse Probl., 5:6 (1989), 1075–1088  crossref  mathscinet  zmath  adsnasa  isi
    17. Bikbaev R., “Structure of a Shock-Wave in the Theory of the Korteweg-Devries Equation”, Phys. Lett. A, 141:5-6 (1989), 289–293  crossref  mathscinet  adsnasa  isi
    18. Ostrovsky L., Stepanyants YA., “Do Internal Solitons Exist in the Ocean”, Rev. Geophys., 27:3 (1989), 293–310  crossref  adsnasa  isi
    19. S. S. P. Parkin, V. R. Deline, “Unidirectionally biased Permalloy: A polarized-neutron-reflection experiment”, Phys Rev B, 42:16 (1990), 10583  crossref  adsnasa  isi
    20. T.P. Russell, “X-ray and neutron reflectivity for the investigation of polymers”, Materials Science Reports, 5:4 (1990), 171  crossref
    21. Kotliarov V., “Decomposition of the Step-Like Initial Data in Modified Korteweg-Devries Equation”, 312, no. 5, 1990, 1041–1044  isi
    22. I. A. Anders, V. P. Kotlyarov, “Characterization of the scattering data of the Schrödinger and Dirac operators”, Theoret. and Math. Phys., 88:1 (1991), 725–734  mathnet  crossref  mathscinet  zmath  isi
    23. Thomas M. Roberts, “Introduction to Schrödinger inverse scattering”, Physica B: Condensed Matter, 173:1-2 (1991), 157  crossref
    24. Kivshar Y., Afanasjev V., “Decay of Dark Solitons Due to the Stimulated Raman Effect”, Opt. Lett., 16:5 (1991), 285–287  crossref  adsnasa  isi
    25. I. A. Anders, V. P. Kotlyarov, E. Ya. Khruslov, “Curved asymptotic solitons of the Kadomtsev–Petviashvili equation”, Theoret. and Math. Phys., 99:1 (1994), 402–408  mathnet  crossref  mathscinet  zmath  isi
    26. Anders I., “Curved Asymptotic Solitons of Kadomtsev-Petviashvili-I and Modified Kadomtsev-Petviashvili-I Equations”, Physica D, 87:1-4 (1995), 160–167  crossref  mathscinet  zmath  adsnasa  isi
    27. D. Yu. Ostapenko, A. P. Pal-Val, E. Ya. Khruslov, “Uniform asymptotic formulas for the curved solitons of the Kadomtsev–Petviashvili equations”, Theoret. and Math. Phys., 108:2 (1996), 1013–1018  mathnet  crossref  crossref  mathscinet  zmath  isi
    28. Anders I., Khruslov E., Kotlyarov V., “Soliton Asymptotics of Non-Localized Solutions of Non-Linear Evolutionary Equations”, Nonlinear Anal.-Theory Methods Appl., 30:7 (1997), 3951–3961  crossref  mathscinet  zmath  isi
    29. deMonvel A., Egorova I., Khruslov E., “Soliton Asymptotics of the Cauchy Problem Solution for the Toda Lattice”, Inverse Probl., 13:2 (1997), 223–237  crossref  mathscinet  adsnasa  isi
    30. I. M. Guseinov, A. Kh. Khanmamedov, “The $t\to\infty$ asymptotic regime of the Cauchy problem solution for the Toda chain with threshold-type initial data”, Theoret. and Math. Phys., 119:3 (1999), 739–749  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    31. Anders I., “Long-Time Asymptotics of Non-Decaying Solutions of the (2+1)-Dimensional Gardner Equation”, Asymptotic Anal., 19:3-4 (1999), 185–207  mathscinet  zmath  isi
    32. A. I. Komech, “Attractors of non-linear Hamiltonian one-dimensional wave equations”, Russian Math. Surveys, 55:1 (2000), 43–92  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    33. Igor Anders, Anne Boutet de Monvel, “Asymptotic Solitons of the Johnson Equation”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 284  crossref
    34. de Monvel A., Egorova I., “The Toda Lattice with Step-Like Initial Data. Soliton Asymptotics”, Inverse Probl., 16:4 (2000), 955–977  crossref  mathscinet  zmath  adsnasa  isi
    35. Igor Anders, Anne Boutet de Monvel, “Soliton asymptotics of nondecaying solutions of the modified Kadomtsev–Petviashvili–I equation”, J Math Phys (N Y ), 42:8 (2001), 3673  crossref  mathscinet  zmath
    36. V. B. Baranetskii, V. P. Kotlyarov, “Asymptotic behavior in the trailing edge domain of the solution of the KdV equation with an initial condition of the “threshold type””, Theoret. and Math. Phys., 126:2 (2001), 175–186  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    37. G. U. Urazboev, A. B. Khasanov, “Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data”, Theoret. and Math. Phys., 129:1 (2001), 1341–1356  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    38. Vartanian A., “Exponentially Small Asymptotics of Solutions to the Defocusing Nonlinear Schrodinger Equation: II”, J. Phys. A-Math. Gen., 34:46 (2001), L647–L655  crossref  mathscinet  zmath  adsnasa  isi
    39. de Monvel A., Khruslov E., Kotlyarov V., “Soliton Asymptotics of Rear Part of Non-Localized Solutions of the Kadomtsev-Petviashvili Equation”, J. Nonlinear Math. Phys., 9:1 (2002), 58–76  crossref  mathscinet  zmath  adsnasa  isi
    40. Vartanian A., “Long-Time Asymptotics of Solutions to the Cauchy Problem for the Defocusing Nonlinear Schrodinger Equation with Finite-Density Initial Data. II. Dark Solitons on Continua”, Math. Phys. Anal. Geom., 5:4 (2002), 319–413  crossref  mathscinet  zmath  isi
    41. Caputo J., Stepanyants YA., “Bore Formation, Evolution and Disintegration Into Solitons in Shallow Inhomogeneous Channels”, Nonlinear Process Geophys., 10:4-5 (2003), 407–424  crossref  adsnasa  isi
    42. A. B. Khasanov, G. U. Urazboev, “The solution of general KdV equation in a class of steplike functions”, J. Math. Sci. (N. Y.), 136:1 (2006), 3625–3640  mathnet  crossref  mathscinet  zmath  elib
    43. Bazargan J., “Direct and Inverse Scattering on the Line for One-Dimensional Schrodinger Equation”, Probl. At. Sci. Tech., 2007, no. 3, Part 2, 245–248  isi
    44. de Monvel A.B. Egorova I. Teschl G., “Inverse Scattering Theory for One-Dimensional Schrodinger Operators with Steplike Finite-Gap Potentials”, J. Anal. Math., 106 (2008), 271–316  crossref  mathscinet  zmath  isi
    45. Egorova I., Grunert K., Teschl G., “On the Cauchy Problem for the Korteweg-de Vries Equation with Steplike Finite-Gap Initial Data: I. Schwartz-Type Perturbations”, Nonlinearity, 22:6 (2009), 1431–1457  crossref  mathscinet  zmath  adsnasa  isi  elib
    46. Kotlyarov V., Minakov A., “Riemann–Hilbert Problem to the Modified Korteveg-de Vries Equation: Long-Time Dynamics of the Steplike Initial Data”, J. Math. Phys., 51:9 (2010), 093506  crossref  mathscinet  adsnasa  isi  elib
    47. A. Minakov, “Asymptotics of rarefaction wave solution to the mKdV equation”, Zhurn. matem. fiz., anal., geom., 7:1 (2011), 59–86  mathnet  mathscinet  zmath  elib
    48. Egorova I. Teschl G., “On the Cauchy Problem for the Kortewegde Vries Equation with Steplike Finite-Gap Initial Data II. Perturbations with Finite Moments”, J. Anal. Math., 115 (2011), 71–101  crossref  mathscinet  isi  elib
    49. Minakov A., “Long-Time Behavior of the Solution to the Mkdv Equation with Step-Like Initial Data”, J. Phys. A-Math. Theor., 44:8 (2011), 085206  crossref  mathscinet  zmath  adsnasa  isi  elib
    50. de Monvel A.B., Kotlyarov V.P., Shepelsky D., “Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data”, Int. Math. Res. Notices, 2011, no. 7, 1613–1653  crossref  mathscinet  zmath  isi
    51. V. Kotlyarov, A. Minakov, “Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution”, Zhurn. matem. fiz., anal., geom., 8:1 (2012), 38–62  mathnet  mathscinet  zmath
    52. G. A. El, R. H. J. Grimshaw, W. K. Tiong, “Transformation of a shoaling undular bore”, J. Fluid Mech, 2012, 1  crossref
    53. Bastille O., Rybkin A., “On the Determinant Formula in the Inverse Scattering Procedure with a Partially Known Steplike Potential”, Inverse Probl., 28:3 (2012), 035001  crossref  mathscinet  zmath  adsnasa  isi
    54. Mark J. Ablowitz, Douglas E. Baldwin, “Interactions and asymptotics of dispersive shock waves – Korteweg–de Vries equation”, Physics Letters A, 2013  crossref
    55. Mark J. Ablowitz, Douglas E. Baldwin, “Dispersive shock wave interactions and asymptotics”, Phys. Rev. E, 87:2 (2013)  crossref
    56. S. V. Zakharov, “Renormalization in the Cauchy problem for the Korteweg–de Vries equation”, Theoret. and Math. Phys., 175:2 (2013), 592–595  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    57. Rybkin A., “Spatial Analyticity of Solutions to Integrable Systems. I. the KdV Case”, Commun. Partial Differ. Equ., 38:5 (2013), 802–822  crossref  isi
    58. Iryna Egorova, Zoya Gladka, Volodymyr Kotlyarov, Gerald Teschl, “Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data”, Nonlinearity, 26:7 (2013), 1839  crossref
    59. Xu J., Fan E., Chen Y., “Long-Time Asymptotic for the Derivative Nonlinear Schrodinger Equation with Step-Like Initial Value”, Math. Phys. Anal. Geom., 16:3 (2013), 253–288  crossref  isi
    60. I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zhurn. matem. fiz., anal., geom., 11:2 (2015), 123–158  mathnet  crossref  mathscinet
    61. S. V. Zakharov, A. E. Elbert, “Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics”, Ufa Math. J., 9:1 (2017), 41–53  mathnet  crossref  isi  elib
    62. Alexander E. Elbert, Sergey V. Zakharov, “Dispersive rarefaction wave with a large initial gradient”, Ural Math. J., 3:1 (2017), 33–43  mathnet  crossref
    63. K. Andreiev, I. Egorova, “On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves”, Zhurn. matem. fiz., anal., geom., 13:4 (2017), 325–343  mathnet  crossref
    64. S. M. Grudsky, A. V. Rybkin, “On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation”, Math. Notes, 104:3 (2018), 377–394  mathnet  crossref  crossref  isi  elib
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:616
    Full text:147
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019