RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1980, Volume 113(155), Number 2(10), Pages 302–323 (Mi msb2793)  

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotics of fundamental solutions of second-order divergence differential equations

S. M. Kozlov


Abstract: Let $K(x,y)$ be the fundamental solution of a divergence operator of the following form:
$$ A=-\sum^n_{i,j=1}\frac\partial{\partial x_i}a_{ij}(x)\frac\partial{\partial x_j}. $$
Two types of asymptotics of $K(x,y)$ are considered in the paper: the asymptotic behavior at infinity, i.e. as $|x-y|\to\infty$, and the asymptotic behavior of $K(x,y)$ at $x=y$. In the first case, for operators with smooth, quasiperiodic coefficients the principal term of the asymptotic expression is found, and a power estimate of the remainder term is established. In the second case the principal term in the asymptotic expression for $K(x,y)$ as $x\to y$ is found for an operator $A$ with arbitrary bounded and measurable coefficients $\{a_{ij}(x)\}$. These results are obtained by means of the concept of the $G$-convergence of elliptic differential operators. Further, applications of the results are given to the asymptotics of the spectrum of the operator $A$ in a bounded domain $\Omega$.
Bibliography: 13 titles.

Full text: PDF file (915 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1982, 41:2, 249–267

Bibliographic databases:

UDC: 517.946
MSC: Primary 35J25, 35B40; Secondary 35P20
Received: 25.12.1979

Citation: S. M. Kozlov, “Asymptotics of fundamental solutions of second-order divergence differential equations”, Mat. Sb. (N.S.), 113(155):2(10) (1980), 302–323; Math. USSR-Sb., 41:2 (1982), 249–267

Citation in format AMSBIB
\Bibitem{Koz80}
\by S.~M.~Kozlov
\paper Asymptotics of fundamental solutions of second-order divergence differential equations
\jour Mat. Sb. (N.S.)
\yr 1980
\vol 113(155)
\issue 2(10)
\pages 302--323
\mathnet{http://mi.mathnet.ru/msb2793}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=594840}
\zmath{https://zbmath.org/?q=an:0483.35009|0469.35019}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 41
\issue 2
\pages 249--267
\crossref{https://doi.org/10.1070/SM1982v041n02ABEH002232}


Linking options:
  • http://mi.mathnet.ru/eng/msb2793
  • http://mi.mathnet.ru/eng/msb/v155/i2/p302

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Anshelevich V., Khanin K., Sinai Y., “Symmetric Random-Walks in Random-Environments”, Commun. Math. Phys., 85:3 (1982), 449–470  crossref  mathscinet  zmath  adsnasa  isi
    2. Druskin V., “The Uniqueness in the Resistivity Soundings Inversion for a Piece-Wise Constant Conductivity Structure”, no. 1, 1982, 72–75  isi
    3. Kozlov S., “Ground-States of Quasi-Periodic Operators”, 271, no. 3, 1983, 532–536  mathscinet  zmath  isi
    4. Kawazu K., Kesten H., “On Birth and Death Processes in Symmetric Random Environment”, J. Stat. Phys., 37:5-6 (1984), 561–576  crossref  mathscinet  zmath  adsnasa  isi
    5. Druskin V., “The Uniqueness of the 3-Dimensional Inversion of Ground Data for a Stationary Or Monochromatic-Field Source”, no. 3, 1985, 63–69  mathscinet  isi
    6. Greven A., “Symmetric Exclusion on Random Sets and a Related Problem for Random-Walks in Random Environment”, Probab. Theory Relat. Field, 85:3 (1990), 307–364  crossref  mathscinet  zmath  isi
    7. M. Avellaneda, Fang Hua Lin, “Lp bounds on singular integrals in homogenization”, Comm Pure Appl Math, 44:8-9 (1991), 897  crossref  mathscinet  zmath
    8. Khanin K., “Random Walks in a Random Potential: Loop Condensation Effects”, Int. J. Mod. Phys. B, 10:18-19 (1996), 2393–2404  crossref  mathscinet  zmath  adsnasa  isi
    9. Ramm A., “Fundamental Solutions to Some Elliptic Equations with Discontinuous Senior Coefficients and an Inequality for These Solutions.”, Math. Inequal. Appl., 1:1 (1998), 99–104  mathscinet  zmath  isi
    10. Dungey N., ter Elst A., Robinson D., “On Second-Order Almost-Periodic Elliptic Operators”, J. Lond. Math. Soc.-Second Ser., 63:Part 3 (2001), 735–753  crossref  mathscinet  zmath  isi
    11. Alexopoulos G., “Random Walks on Discrete Groups of Polynomial Volume Growth”, Ann. Probab., 30:2 (2002), 723–801  crossref  mathscinet  zmath  isi
    12. G. Allaire, I. Pankratova, A. Piatnitski, “Homogenization and concentration for a diffusion equation with large convection in a bounded domain”, Journal of Functional Analysis, 2011  crossref  mathscinet
    13. Jun-zhi Cui, Wen-ming He, “The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$”, CPAA, 11:2 (2011), 501  crossref  mathscinet
    14. X. Blanc, F. Legoll, A. Anantharaman, “Asymptotic Behavior of Green Functions of Divergence form Operators with Periodic Coefficients”, Applied Mathematics Research eXpress, 2012  crossref  mathscinet
    15. C.E.. Kenig, Fanghua Lin, Zhongwei Shen, “Periodic Homogenization of Green and Neumann Functions”, Commun. Pur. Appl. Math, 2013, n/a  crossref  mathscinet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:322
    Full text:114
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020