|
This article is cited in 85 scientific papers (total in 85 papers)
Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)
V. V. Peller
Abstract:
A criterion is given for a Hankel operator $H_\varphi\colon H^2\to H^2_-$ ($H_\varphi f=(I-\mathbf P)\varphi f$, where $\mathbf P$ is the orthogonal projection of $L^2$ onto $H^2$) to belong to the Schatten–von Neumann class $\mathfrak S_p$ in terms of its symbol $\varphi$. Various applications are considered: a precise description is obtained for classes of functions definable in terms of rational approximation in the $BMO$ (bounded mean oscillation) norm; it is proved that the averaging projection onto the set of Hankel operators is bounded in the norm of $\mathfrak S_p$, $1<p<+\infty$; a counterexample is given to a conjecture of Simon on the majorization property in $\mathfrak S_p$; a problem of Ibragimov and Solev on stationary Gaussian processes is solved; and a criterion is obtained for functions of an operator in the Sz.-Nagy–Foias model to belong to the class $\mathfrak S_p$.
Bibliography: 47 titles.
Full text:
PDF file (1861 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Sbornik, 1982, 41:4, 443–479
Bibliographic databases:
UDC:
517.5
MSC: Primary 30D55, 46E35, 47B10, 47B35; Secondary 30E05, 41A20, 41A25, 47D25, 60G10, 60G15 Received: 25.03.1980
Citation:
V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Mat. Sb. (N.S.), 113(155):4(12) (1980), 538–581; Math. USSR-Sb., 41:4 (1982), 443–479
Citation in format AMSBIB
\Bibitem{Pel80}
\by V.~V.~Peller
\paper Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)
\jour Mat. Sb. (N.S.)
\yr 1980
\vol 113(155)
\issue 4(12)
\pages 538--581
\mathnet{http://mi.mathnet.ru/msb2817}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=602274}
\zmath{https://zbmath.org/?q=an:0478.47015|0458.47022}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 41
\issue 4
\pages 443--479
\crossref{https://doi.org/10.1070/SM1982v041n04ABEH002242}
Linking options:
http://mi.mathnet.ru/eng/msb2817 http://mi.mathnet.ru/eng/msb/v155/i4/p538
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Peller, S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes”, Russian Math. Surveys, 37:1 (1982), 61–144
-
Janson S., Wolff T., “Schatten Classes and Commutators of Singular Integral-Operators”, Ark. Mat., 20:2 (1982), 301–310
-
A. V. Bukhvalov, “Application of methods of the theory of order-bounded operators to the theory of operators in $L^p$-spaces”, Russian Math. Surveys, 38:6 (1983), 43–98
-
V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494
-
Clark D., “Hankel-Operators on Hilbert-Space - Power,Sc”, Bull. Amer. Math. Soc., 9:1 (1983), 98–102
-
Pekarskii A., “Rational Approximation of the Class Hp, O Greater-Than-P-Greater-Than-Infinity”, Dokl. Akad. Nauk Belarusi, 27:1 (1983), 9–12
-
Semmes S., “Another Characterization of Hp, O-Less-Than-P-Less-Than-Infinity, with an Application to Interpolation”, Lect. Notes Math., 992 (1983), 212–226
-
Peller V., “Continuity Properties of the Averaging Projection Onto the Set of Hankel-Matrices”, J. Funct. Anal., 53:1 (1983), 74–83
-
A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574
-
L. D. Pustyl'nikov, “Toeplitz and Hankel matrices and their applications”, Russian Math. Surveys, 39:4 (1984), 63–98
-
Michele Pavon, “Canonical correlations of past inputs and future outputs for linear stochastic systems”, Systems & Control Letters, 4:4 (1984), 209
-
Pekarskii A., “Direct and Inverse-Theorems of Rational Approximation of the Hardy Class”, Dokl. Akad. Nauk Belarusi, 28:2 (1984), 111–114
-
Peller V., “Metric Properties of an Averaging Projector Onto the Sets of Hankel-Matrices”, 278, no. 2, 1984, 275–281
-
Peetre J., Svensson E., “On the Generalized Hardy Inequality of Mcgehee, Pigno and Smith and the Problem of Interpolation Between Bmo and a Besov Space”, Math. Scand., 54:2 (1984), 221–241
-
Janson S., Nilsson P., Peetre J., “Notes on Wolff Note on Interpolation Spaces”, Proc. London Math. Soc., 48:MAR (1984), 283–299
-
Janson S., Peetre J., “Higher-Order Commutators of Singular Integral-Operators”, 1070, 1984, 125–142
-
Ibragimov I., Solev V., “Some Analytical Problems in the Theory of Stationary Stochastic-Processes”, 1043, 1984, 87–91
-
Hruscev S., Peller V., “Moduli of Hankel-Operators, Past and Future”, 1043, 1984, 92–97
-
A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18
-
V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123
-
Finbarr Holland, “Report on the Dublin matrix theory conference, March 1984”, Linear Algebra and its Applications, 68 (1985), 263
-
Power S., “Commutators with the Triangular Projection and Hankel Forms on Nest-Algebras”, J. Lond. Math. Soc.-Second Ser., 32:2 (1985), 272–282
-
O. G. Parfenov, “Estimates of the singular numbers of the Carleson imbedding operator”, Math. USSR-Sb., 59:2 (1988), 497–514
-
Richard Rochberg, Stephen Semmes, “A decomposition theorem for BMO and applications”, Journal of Functional Analysis, 67:2 (1986), 228
-
Timotin D., “A Note on Cp Estimates for Certain Kernels”, Integr. Equ. Oper. Theory, 9:2 (1986), 295–304
-
A. A. Pekarskii, “Tchebycheff rational approximation in the disk, on the circle, and on a closed interval”, Math. USSR-Sb., 61:1 (1988), 87–102
-
A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of
analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348
-
Volberg A. Ivanov O., “Belonging of the Product of 2 Hankel-Operators to the Schatten-Vonneumann Class”, no. 4, 1987, 3–6
-
Janson S., Peetre J., “A New Generalization of Hankel-Operators - (the Case of Higher Weights)”, Math. Nachr., 132 (1987), 313–328
-
Janson S., Peetre J., “Paracommutators - Boundedness and Schatten-Vonneumann Properties”, Trans. Am. Math. Soc., 305:2 (1988), 467–504
-
Petrushev P., “Direct and Converse Theorems for Spline and Rational Approximation and Besov-Spaces”, Lect. Notes Math., 1302 (1988), 363–377
-
Peller V., “Smoothness of Schmidt Functions of Smooth Hankel-Operators”, Lect. Notes Math., 1302 (1988), 337–346
-
Timotin D., “Cp-Estimates for Certain Kernels on Local-Fields”, Studia Math., 88:1 (1988), 43–50
-
Richard Rochberg, Stephen Semmes, “Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators”, Journal of Functional Analysis, 86:2 (1989), 237
-
Peetre J. Karlsson J., “Rational Approximation-Analysis of the Work of Pekarskii”, Rocky Mt. J. Math., 19:1 (1989), 313–333
-
Janson S., Peetre J., Wallsten R., “A New Look on Hankel Forms Over Fock Space”, Studia Math., 95:1 (1989), 33–41
-
C. K. Chui, X. Li, J. D. Ward, “On the convergence rate ofs-numbers of compact Hankel operators”, Circuits Syst Signal Process, 11:2 (1992), 353
-
Netrusov Y., “Interpolation (Real Method) of Spaces of Smooth Functions with Space of Bounded-Functions”, Dokl. Akad. Nauk, 325:6 (1992), 1120–1123
-
V. A. Prokhorov, “Rational approximation of analytic functions”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 139–164
-
A. Khatamov, “Inverse theorems in the theory of rational approximations of functions of several variables”, Math. Notes, 54:2 (1993), 858–866
-
A. P. Petukhov, “Convergence of Fourier series for functions in the classes of Besov–Lizorkin–Triebel”, Math. Notes, 56:1 (1994), 694–698
-
V. L. Kreptogorskii, “Interpolation in Lizorkin–Triebel and Besov spaces”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 315–326
-
Qingtang Jiang, Lizhong Peng, “Toeplitz and Hankel type operators on an annulus”, Mathematika, 41:2 (1994), 266
-
Stepanov V., “On Singular Numbers of a Certain Class of Integral-Operators”, Dokl. Akad. Nauk, 336:4 (1994), 457–458
-
Wysoczanski J., “A Characterization of Radial Herz-Schur Multipliers on Free-Products of Discrete-Groups”, J. Funct. Anal., 129:2 (1995), 268–292
-
Françoise Lust-Piquard, “On the Coefficient Problem: a Version of the Kahane–Katznelson–De Leeuw Theorem for Spaces of Matrices”, Journal of Functional Analysis, 149:2 (1997), 352
-
Evsey Dyn'kin, “Inequalities for Rational Functions”, Journal of Approximation Theory, 91:3 (1997), 349
-
Song-Ying Li, Bernard Russo, “Hankel operators in the Dixmier class”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 325:1 (1997), 21
-
Krantz S., Li S., Rochberg R., “The Effect of Boundary Geometry on Hankel Operators Belonging to the Trace Ideals of Bergman Spaces”, Integr. Equ. Oper. Theory, 28:2 (1997), 196–213
-
A HARCHARRAS, “Analyse de Fourier, multiplicateurs de Schur sur Sp et ensembles Λ(p)cb non commutatifs”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:7 (1998), 845
-
È. S. Belinskii, “Interpolation and integral norms of hyperbolic polynomials”, Math. Notes, 66:1 (1999), 16–23
-
Bonami A., Peloso M., Symesak F., “Powers of the Szego Kernel and Hankel Operators on Hardy Spaces”, Mich. Math. J., 46:2 (1999), 225–250
-
William Hornor, James E. Jamison, “Isometries of some Banach spaces of analytic functions”, Integr equ oper theory, 41:4 (2001), 410
-
Basor E., Ehrhardt T., “Asymptotic Formulas for Determinants of a Sum of Finite Toeplitz and Hankel Matrices”, Math. Nachr., 228 (2001), 5–45
-
M. T. Karaev, “Berezin Symbols and Schatten–von Neumann Classes”, Math. Notes, 72:2 (2002), 185–192
-
A. A. Pekarskii, “New Proof of the Semmes Inequality for the Derivative of the Rational Function”, Math. Notes, 72:2 (2002), 230–236
-
Ho M., “Operators on Spaces of Analytic Functions Belonging to l-(1,l-Infinity)”, J. Math. Anal. Appl., 268:2 (2002), 665–683
-
Cwikel M., Persson L., Rochberg R., Sparr G., “Jaak Peetre, the Man and His Work”, Function Spaces, Interpolation Theory and Related Topics, Proceedings, eds. Cwikel M., Englis M., Kufner A., Persson L., Spaar G., Walter de Gruyter & Co, 2002, 1–22
-
Ehrhardt T., “A New Algebraic Approach to the Szego-Widom Limit Theorem”, Acta Math. Hung., 99:3 (2003), 233–261
-
Sandra Pott, Martin P Smith, “Paraproducts and Hankel operators of Schatten class via p-John–Nirenberg Theorem”, Journal of Functional Analysis, 217:1 (2004), 38
-
Aleksandrov A. Peller V., “Distorted Hankel Integral Operators”, Indiana Univ. Math. J., 53:4 (2004), 925–940
-
Pascale Vitse, “Functional calculus under Kreiss type conditions”, Math Nachr, 278:15 (2005), 1811
-
V. L. Kreptogorskii, “Interpolation of Rational Approximation Spaces Belonging to the Besov Class”, Math. Notes, 77:6 (2005), 809–816
-
Ho M.C., Wong M.M., “Applications of the Theory of S.N. Functions to the Duality of Analytic Function Spaces and the Hankel Operators in S-Pi”, Indiana Univ. Math. J., 55:5 (2006), 1645–1669
-
Ho M., Wong M., “Analytic Spaces Defined by Symmetric Norming Functions”, Taiwan. J. Math., 10:1, SI (2006), 1–11
-
L. Baratchart, M. L. Yattselev, “Meromorphic approximants to complex Cauchy transforms with polar singularities”, Sb. Math., 200:9 (2009), 1261–1297
-
Quanlei Fang, Jingbo Xia, “Schatten class membership of Hankel operators on the unit sphere”, Journal of Functional Analysis, 257:10 (2009), 3082
-
Haagerup U., Steenstrup T., Szwarc R., “Schur Multipliers and Spherical Functions on Homogeneous Trees”, Int. J. Math., 21:10 (2010), 1337–1382
-
Opmeer M.R., “Decay of Hankel Singular Values of Analytic Control Systems”, Syst. Control Lett., 59:10 (2010), 635–638
-
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238
-
J. Math. Sci. (N. Y.), 182:5 (2012), 639–645
-
Aleksandrov A.B., Peller V.V., “Estimates of Operator Moduli of Continuity”, J. Funct. Anal., 261:10 (2011), 2741–2796
-
Patrick Gérard, Sandrine Grellier, “Effective integrable dynamics for a certain nonlinear wave equation”, Anal. PDE, 5:5 (2012), 1139
-
Haagerup U., Moller S., “Radial Multipliers on Reduced Free Products of Operator Algebras”, J. Funct. Anal., 263:8 (2012), 2507–2528
-
Galanopoulos P., Pau J., “Hankel Operators on Large Weighted Bergman Spaces”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 37:2 (2012), 635–648
-
Patrick Gérard, Sandrine Grellier, “Inverse spectral problems for compact Hankel operators”, J. Inst. Math. Jussieu, 2013, 1
-
Quanlei Fang, Jingbo Xia, “A local inequality for Hankel operators on the sphere and its application”, Journal of Functional Analysis, 2013
-
Patrick Gérard, Yanqiu Guo, E.S.. Titi, “On the radius of analyticity of solutions to the cubic Szegő equation”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2013
-
Baranov A. Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556
-
Fritz Gesztesy, Marius Mitrea, Roger Nichols, “Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions”, JAMA, 122:1 (2014), 229
-
Quanlei Fang, Jingbo Xia, “On the membership of Hankel operators in a class of Lorentz ideals”, Journal of Functional Analysis, 2014
-
A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702
-
A. B. Aleksandrov, V. V. Peller, “Krein's trace formula for unitary operators and operator Lipschitz functions”, Funct. Anal. Appl., 50:3 (2016), 167–175
-
Carey A., Gesztesy F., Grosse H., Levitina G., Potapov D., Sukochev F., Zanin D., “Trace formulas for a class of non-Fredholm operators: A review”, Rev. Math. Phys., 28:10 (2016), 1630002
-
S. M. Grudsky, A. V. Rybkin, “On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation”, Math. Notes, 104:3 (2018), 377–394
|
Number of views: |
This page: | 889 | Full text: | 260 | References: | 45 |
|