RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1998, Volume 189, Number 1, Pages 79–100 (Mi msb293)  

This article is cited in 51 scientific papers (total in 51 papers)

An example of a finitely presented amenable group not belonging to the class $EG$

R. I. Grigorchuk


Abstract: An example of a finitely presented amenable group not belonging to the class $EG$ of elementary amenable groups is constructed. By this means, a solution of the Day problem in the class of finitely presented groups is given.

DOI: https://doi.org/10.4213/sm293

Full text: PDF file (337 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1998, 189:1, 75–95

Bibliographic databases:

UDC: 512
MSC: 20F05, 43A07
Received: 30.12.1996

Citation: R. I. Grigorchuk, “An example of a finitely presented amenable group not belonging to the class $EG$”, Mat. Sb., 189:1 (1998), 79–100; Sb. Math., 189:1 (1998), 75–95

Citation in format AMSBIB
\Bibitem{Gri98}
\by R.~I.~Grigorchuk
\paper An example of a~finitely presented amenable group not belonging to the~class~$EG$
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 1
\pages 79--100
\mathnet{http://mi.mathnet.ru/msb293}
\crossref{https://doi.org/10.4213/sm293}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1616436}
\zmath{https://zbmath.org/?q=an:0931.43003}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 1
\pages 75--95
\crossref{https://doi.org/10.1070/sm1998v189n01ABEH000293}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000073979600004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220863}


Linking options:
  • http://mi.mathnet.ru/eng/msb293
  • https://doi.org/10.4213/sm293
  • http://mi.mathnet.ru/eng/msb/v189/i1/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. de la Harpe, R. I. Grigorchuk, T. Ceccherini-Silberstein, “Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces”, Proc. Steklov Inst. Math., 224 (1999), 57–97  mathnet  mathscinet  zmath
    2. Yu. G. Leonov, “On a lower bound for the growth function of the Grigorchuk group”, Math. Notes, 67:3 (2000), 403–405  mathnet  crossref  crossref  mathscinet  zmath
    3. Eckmann B., “Introduction to $l_2$-methods in topology: reduced $l_2$-homology, harmonic chains, $l_2$-Betti numbers”, Israel J. Math., 117 (2000), 183–219  crossref  mathscinet  zmath  isi
    4. Yu. G. Leonov, “A lower bound for the growth of a 3-generator 2-group”, Sb. Math., 192:11 (2001), 1661–1676  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Ol'Shanskii A.Yu., Sapir M.V., “Non-amenable finitely presented torsion-by-cyclic groups”, Electron. Res. Announc. Amer. Math. Soc., 7 (2001), 63–71  crossref  mathscinet  isi  scopus  scopus  scopus
    6. Röver C.E., “Abstract commensurators of groups acting on rooted trees”, Geom. Dedicata, 94:1 (2002), 45–61  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    7. Grigorchuk R.I., Żuk A., “On a torsion-free weakly branch group defined by a three state automaton”, Internat. J. Algebra Comput., 12:1-2 (2002), 223–246  crossref  mathscinet  zmath  isi  elib
    8. Sapir M., Wise D.T., “Ascending HNN extensions of residually finite groups can be non-Hopfian and can have very few finite quotients”, J. Pure Appl. Algebra, 166:1-2 (2002), 191–202  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. Bartholdi L., “Endomorphic presentations of branch groups”, J. Algebra, 268:2 (2003), 419–443  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    10. Ol'Shanskii A.Yu., Sapir M.V., “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 96, 43–169  crossref  mathscinet  isi
    11. Bartholdi L., Grigorchuk R., Nekrashevych V., “From fractal groups to fractal sets”, Fractals in Graz 2001: Analysis - Dynamics - Geometry - Stochastics, Trends in Mathematics, 2003, 25–118  mathscinet  zmath  isi
    12. Navas A.S., “Quelques groupes moyennables de difféomorphismes de l'intervalle [Some amenable groups of diffeomorphisms of the interval]”, Bol. Soc. Mat. Mexicana (3), 10:2 (2004), 219–244  mathscinet  isi
    13. Guba V.S., “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702  crossref  mathscinet  zmath  isi  elib
    14. Navas A., “Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite [Solvable groups of diffeomorphisms of the interval, the circle and the real line]”, Bull. Braz. Math. Soc. (N.S.), 35:1 (2004), 13–50  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    15. J. Math. Sci. (N. Y.), 140:3 (2007), 391–397  mathnet  crossref  mathscinet  zmath  elib
    16. Bartholdi L., Virág B., “Amenability via random walks”, Duke Math. J., 130:1 (2005), 39–56  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Brin M.G., “Elementary amenable subgroups of R. Thompson's group $F$”, Internat. J. Algebra Comput., 15:4 (2005), 619–642  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    18. Ivanov S.V., “Embedding free Burnside groups in finitely presented groups”, Geom. Dedicata, 111:1 (2005), 87–105  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    19. Nekrashevych V., “Self-similar inverse semigroups and Smale spaces”, Internat. J. Algebra Comput., 16:5 (2006), 849–874  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    20. Smith J., “The asymptotic dimension of the first Grigorchuk group is infinity”, Rev. Mat. Complut., 20:1 (2007), 119–121  crossref  mathscinet  zmath  isi
    21. Grigorchuk R., Nekrashevych V., “Self-similar groups, operator algebras and Schur complement”, J. Mod. Dyn., 1:3 (2007), 323–370  crossref  mathscinet  zmath  isi
    22. de Cornulier Y., Guyot L., Pitsch W., “On the isolated points in the space of groups”, J. Algebra, 307:1 (2007), 254–277  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    23. Burillo J., Cleary S., Wiest B., “Computational explorations in Thompson's group F”, Geometric Group Theory, Trends in Mathematics, 2007, 21–35  crossref  mathscinet  zmath  isi
    24. Grigorchuk R., Savchuk D., Sunic Z., “The spectral problem, substitutions and iterated monodromy”, Probability and Mathematical Physics: A Volume in Honor of Stanislav Molchanov, Crm Proceedings & Lecture Notes, 42, 2007, 225–248  crossref  mathscinet  zmath  isi
    25. Farley D., “The action of Thompson's group on a CAT(0) boundary”, Groups Geom. Dyn., 2:2 (2008), 185–222  crossref  mathscinet  zmath  isi
    26. Delzant T., Grigorchuk R., “Homomorphic images of branch groups, and Serre's property (FA)”, In Memory of Alexander Reznikov, Progress in Mathematics, 265, 2008, 353–375  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    27. V. S. Atabekyan, A. S. Pailevanyan, “Vlozhenie absolyutno svobodnykh grupp v gruppy $B(m,n,1)$”, Uch. zapiski EGU, ser. Fizika i Matematika, 2008, no. 3, 25–33  mathnet
    28. Brieussel J., “Amenability and non-uniform growth of some directed automorphism groups of a rooted tree”, Math. Z., 263:2 (2009), 265–293  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    29. Grigorchuk R.I., Ivanov S.V., “On Dehn functions of infinite presentations of groups”, Geom. Funct. Anal., 18:6 (2009), 1841–1874  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    30. Kaimanovich V.A., “Self-similarity and Random Walks”, Nanowires - Synthesis, Properties, Assembly and Applications, Materials Research Society Symposium Proceedings, 1144, 2009, 45–70  mathscinet  isi
    31. Bartholdi L., Kaimanovich V.A., Nekrashevych V.V., “Amenability of Automata Groups”, Duke Mathematical Journal, 154:3 (2010), 575–598  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    32. Funar L., Otera D.E., “On the wgsc and qsf tameness conditions for finitely presented groups”, Groups Geometry and Dynamics, 4:3 (2010), 549–596  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    33. Svetla Vassileva, “Polynomial time conjugacy in wreath products and free solvable groups”, Groups – Complexity – Cryptology, 3:3 (2011), 105  crossref  mathscinet  zmath  scopus  scopus  scopus
    34. R. I. Grigorchuk, “Some topics in the dynamics of group actions on rooted trees”, Proc. Steklov Inst. Math., 273 (2011), 64–175  mathnet  crossref  mathscinet  zmath  isi  elib
    35. Maruyama K.-i., “The groups of self-homotopy equivalences and the Tits alternative”, Bull London Math Soc, 43:6 (2011), 1191–1197  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    36. Haagerup U., Picioroaga G., “New Presentations of Thompson's Groups and Applications”, Journal of Operator Theory, 66:1 (2011), 217–232  mathscinet  zmath  isi
    37. Savchuk D., Vorobets Ya., “Automata generating free products of groups of order 2”, J Algebra, 336:1 (2011), 53–66  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    38. Benli M.G., “Profinite Completion of Grigorchuk's Group Is Not Finitely Presented”, Int. J. Algebr. Comput., 22:5 (2012), 1250045  crossref  mathscinet  zmath  isi
    39. Benli M.G., “Indicable Groups and Endomorphic Presentations”, Glasg. Math. J., 54:2 (2012), 335–344  crossref  mathscinet  zmath  isi  elib  scopus
    40. Gandini G., “Cohomological Invariants and the Classifying Space for Proper Actions”, Group. Geom. Dyn., 6:4 (2012), 659–675  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    41. Bartholdi L., “(Self-)Similar Groups and the Farrell-Jones Conjectures”, Group. Geom. Dyn., 7:1 (2013), 1–11  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    42. Hartung R., “Algorithms for Finitely l-Presented Groups and their Applications to Some Self-Similar Groups”, Expo. Math., 31:4 (2013), 368–384  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    43. R. Grigorchuk, K. Medynets, “On algebraic properties of topological full groups”, Sb. Math., 205:6 (2014), 843–861  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    44. Grigorchuk R., “On the Gap Conjecture Concerning Group Growth”, Bull. Math. Sci., 4:1 (2014), 113–128  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    45. L. A. Beklaryan, “Groups of line and circle homeomorphisms. Metric invariants and questions of classification”, Russian Math. Surveys, 70:2 (2015), 203–248  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    46. Grigorchuk R., Leonov Y., Nekrashevych V., Sushchansky V., “Self-similar groups, automatic sequences, and unitriangular representations”, Bull. Math. Sci., 6:2 (2016), 231–285  crossref  mathscinet  zmath  isi  scopus
    47. Mihalik M.L., “Semistability and simple connectivity at of finitely generated groups with a finite series of commensurated subgroups”, Algebr. Geom. Topol., 16:6 (2016), 3615–3640  crossref  mathscinet  zmath  isi  scopus
    48. Yamauchi T., “Hereditarily infinite-dimensional property for asymptotic dimension and graphs with large girth”, Fundam. Math., 236:2 (2017), 187–192  crossref  mathscinet  zmath  isi  scopus
    49. Xie Zh., Yu G., “Higher Rho Invariants and the Moduli Space of Positive Scalar Curvature Metrics”, Adv. Math., 307 (2017), 1046–1069  crossref  mathscinet  zmath  isi  scopus
    50. Holt D. Rees S. Rover C., “Groups, Languages and Automata”, Groups, Languages and Automata, London Mathematical Society Student Texts, 88, Cambridge Univ Press, 2017, 1–294  crossref  mathscinet  zmath  isi
    51. Funke F., “The l-2-Torsion Polytope of Amenable Groups”, Doc. Math., 23 (2018), 1969–1993  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:736
    Full text:162
    References:63
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019