RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1974, Volume 93(135), Number 2, Pages 254–267 (Mi msb2972)  

This article is cited in 1 scientific paper (total in 1 paper)

First order hyperbolic equations with constant operator coefficients

E. A. Fadeeva


Abstract: This paper considers the Cauchy problem for a hyperbolic equation with constant operator coefficients in Hilbert space:
$$ \frac{\partial\psi}{\partial t}=\sum_{k=1}^n A_k\frac{\partial\psi}{\partial x_k}+B\psi, $$
where $A_k$ and $B$ are selfadjoint operators and $B$ is semibounded.
As an example we consider ultraparabolic systems.
Bibliography: 10 titles.

Full text: PDF file (1317 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1974, 22:2, 257–270

Bibliographic databases:

UDC: 517.945
MSC: Primary 35L45; Secondary 35K45, 35R15, 47D05, 47B44
Received: 16.03.1973 and 06.08.1973

Citation: E. A. Fadeeva, “First order hyperbolic equations with constant operator coefficients”, Mat. Sb. (N.S.), 93(135):2 (1974), 254–267; Math. USSR-Sb., 22:2 (1974), 257–270

Citation in format AMSBIB
\Bibitem{Fad74}
\by E.~A.~Fadeeva
\paper First order hyperbolic equations with constant operator coefficients
\jour Mat. Sb. (N.S.)
\yr 1974
\vol 93(135)
\issue 2
\pages 254--267
\mathnet{http://mi.mathnet.ru/msb2972}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=336091}
\zmath{https://zbmath.org/?q=an:0287.35067}
\transl
\jour Math. USSR-Sb.
\yr 1974
\vol 22
\issue 2
\pages 257--270
\crossref{https://doi.org/10.1070/SM1974v022n02ABEH002166}


Linking options:
  • http://mi.mathnet.ru/eng/msb2972
  • http://mi.mathnet.ru/eng/msb/v135/i2/p254

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Shokurov, “Prym varieties: theory and applications”, Math. USSR-Izv., 23:1 (1984), 83–147  mathnet  crossref  mathscinet  zmath
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:394
    Full text:69
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019