Matematicheskii Sbornik. Novaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1975, Volume 96(138), Number 2, Pages 189–211 (Mi msb3123)  

This article is cited in 4 scientific papers (total in 4 papers)

On convergence of Riesz spherical means of multiple Fourier series

B. I. Golubov


Abstract: An $N$-dimensional analog is proved of a theorem of Plessner and Ul'yanov on equivalent conditions for convergence of certain series and integrals. There is obtained from it a sufficient condition on the quadratic modulus of continuity of a periodic function of $N\geqslant2$ variables ensuring the a.e. convergence of the spherical sums of its Fourier series. A two-dimensional analog of a theorem of Luzin and Denjoy and an $N$-dimensional analog of the Dini–Lipschitz criterion are proved. A necessary and sufficient condition on a function $\Phi(u)$ is derived ensuring the pointwise convergence of the Riesz spherical means of critical order of multiple Fourier series of functions of bounded $\Phi$-variation.
Bibliography: 33 titles.

Full text: PDF file (1847 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1975, 25:2, 177–197

Bibliographic databases:

UDC: 517.522.3
MSC: Primary 42A20, 42A92; Secondary 42A28, 26A15, 26A45
Received: 18.02.1974

Citation: B. I. Golubov, “On convergence of Riesz spherical means of multiple Fourier series”, Mat. Sb. (N.S.), 96(138):2 (1975), 189–211; Math. USSR-Sb., 25:2 (1975), 177–197

Citation in format AMSBIB
\Bibitem{Gol75}
\by B.~I.~Golubov
\paper On convergence of Riesz spherical means of multiple Fourier series
\jour Mat. Sb. (N.S.)
\yr 1975
\vol 96(138)
\issue 2
\pages 189--211
\mathnet{http://mi.mathnet.ru/msb3123}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=382993}
\zmath{https://zbmath.org/?q=an:0305.42022}
\transl
\jour Math. USSR-Sb.
\yr 1975
\vol 25
\issue 2
\pages 177--197
\crossref{https://doi.org/10.1070/SM1975v025n02ABEH002205}


Linking options:
  • http://mi.mathnet.ru/eng/msb3123
  • http://mi.mathnet.ru/eng/msb/v138/i2/p189

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. I. Golubov, “On the summability of Fourier integrals by Riesz spherical means”, Math. USSR-Sb., 33:4 (1977), 501–518  mathnet  crossref  mathscinet  zmath  isi
    2. Christopher Meaney, “On almost-everywhere convergent eigenfunction expansions of the Laplace–Beltrami operator”, Math Proc Camb Phil Soc, 92:1 (1982), 129  crossref  mathscinet  zmath
    3. M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. M. I. Dyachenko, “$U$-convergence almost everywhere of double Fourier series”, Sb. Math., 186:1 (1995), 47–64  mathnet  crossref  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:299
    Full text:101
    References:46

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021