RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1998, Volume 189, Number 5, Pages 47–68 (Mi msb319)  

This article is cited in 2 scientific papers (total in 2 papers)

On the small balls problem for equivalent Gaussian measures

V. I. Bogachev

M. V. Lomonosov Moscow State University

Abstract: Let $\mu$ be a centred Gaussian measure in a linear space $X$ with Cameron-Martin space $H$, let $q$ be a $\mu$-measurable seminorm, and let $Q$ be a $\mu$-measurable second-order polynomial. We show that it is sufficient for the existence of the limit $\lim _{\varepsilon \to 0}\mathsf E(\exp Q|q\leqslant \varepsilon)$, where $E$ is the expectation with respect to $\mu$, that the second derivative $D_{H}^{ 2}Q$ of the function $Q$ be a nuclear operator on $H$. This condition is also necessary for the existence of the above-mentioned limit for all seminorms $q$. The problem under discussion can be reformulated as follows: study $\lim _{\varepsilon \to 0}\nu (q\leqslant \varepsilon )/\mu (q\leqslant \varepsilon )$ for Gaussian measures $\nu$ equivalent to $\mu$.

DOI: https://doi.org/10.4213/sm319

Full text: PDF file (366 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1998, 189:5, 683–705

Bibliographic databases:

UDC: 512.55
MSC: 28C20, 60B11
Received: 05.02.1998

Citation: V. I. Bogachev, “On the small balls problem for equivalent Gaussian measures”, Mat. Sb., 189:5 (1998), 47–68; Sb. Math., 189:5 (1998), 683–705

Citation in format AMSBIB
\Bibitem{Bog98}
\by V.~I.~Bogachev
\paper On the small balls problem for equivalent Gaussian measures
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 5
\pages 47--68
\mathnet{http://mi.mathnet.ru/msb319}
\crossref{https://doi.org/10.4213/sm319}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1639173}
\zmath{https://zbmath.org/?q=an:0938.28010}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 5
\pages 683--705
\crossref{https://doi.org/10.1070/sm1998v189n05ABEH000319}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075975300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220815}


Linking options:
  • http://mi.mathnet.ru/eng/msb319
  • https://doi.org/10.4213/sm319
  • http://mi.mathnet.ru/eng/msb/v189/i5/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Kara-Zaitri L., Laksaci A., Rachdi M., Vieu Ph., “Uniform in bandwidth consistency for various kernel estimators involving functional data”, J. Nonparametr. Stat., 29:1 (2017), 85–107  crossref  mathscinet  isi  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:295
    Full text:67
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018